*

PUTTT RN

.. NASASP-346

PR . " . ety
P 3 - - . o Jn =w -
- . - t .
L]
, .
= -
i RYTa ST RN ALY TNl Ml T sl ohliin T s K i
\

(ACCESSION NUMBER} {THRU)

(PAGES) (CODE)

(NASA CR GR TMX OR AD NUMBER) {CATEGORY)

FACILITY FORM 602

s,

" NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

’






CHAPTER

CONTENTS

1 Review of Acoustics of Moving Media . . . . .

1.

1

1.2

1.

INTRODUCTION. . . . . ¢ o v e e e o e e e e e e
DERIVATION OF BASIC EQUATIONS . . . . . ...
FLEMENTARY SOLUTIONS OF ACOUSTIC
EQUATIONS . . . . . . o v v v oo e e e
INTEGRAL FORMULAS FOR SOLUTIONS TO
THE WAVE EQUATION . . .. .. . . .. ...
SOURCE DI.STRIBUTION IN FREE SPACE:
MULTIPOLE EXPANSION . . . . . . .« . -« «

6 RADIATION FIELD . . . . . .« « « o oo v oo oo
7 ENERGY RELATIONS . . . . . . .« oo v v
1.8
APPENDIX 1.A - FOURIER REPRESENTATION OF

FUNCTIONS . . . o o o e e e e s e e e e e e
APPENDIX 1.B - CLEBSCH POTENTIAL . .. .. ...
APPENDIX 1.C - COMMONLY USED SYMBOLS . . . . .
REFERENCES . . .+« « o v v v v e e e e e e e

MOVING SOUND SOURCES . . . . . . .« . .« v

2 Aerodynamic Sound . .. ... ..o
9 1 INTRODUCTION. . . . ¢ o v v v oo oo ee e
9.9 LIGHTHILL'S ACOUSTIC ANALOGY. . . . ... ..
2 3 SOLUTION TO LIGHTHILL'S EQUATION WHEN

NO SOLID BOUNDARIES ARE PRESENT . . L.

2.4 APPLICATION OF LIGHTHILL'S THEORY TO

TURBULENT FLOWS . . . . . .« v oo v v s

9 5 PHYSICSOF JETNOISE . . . . . .« o o v oo v '

-, DCEDING PAGE BLANK NOT rILMED

11

30

46
51
57
70

84
92
98
101

103
103
105

109

113
124



APPENDIX - TRANSFORMATION OF SOURCE
CORRELATION FUNCTION . ., . . . .. .. ... ... 154
REFERENCES . . . . .. .. .. ... ... ....... 156

3 Effect of Solid Boundaries . . . . ... . . = 161

3.1 INTRODUCTION . . . . .. ... .. ... ..... 161
3.2 DERIVATION OF FUNDAMENTAL EQUATION . . . 162
3.3 FFOWCS WILLIAMS - HAWKINGS EQUATION . . . 166
3.4 CALCULATION OF AERODYNAMIC FORCES . . . . 185
3.5 CALCULATION OF SOUND FIELD FROM

SPECIAL FLOWS. . . . ... ... ... ..... 208

APPENDIX 3. A - REDUCTION OF VOLUME
DISPLACEMENT TERM TO DIPOLE AND

QUADRUPOLE TERMS . . . . . . . . .. .. ... 274
APPENDIX 3.B - SOLUTION TO TWO-DIMENSIONAL
UNSTEADY-AIRFOIL PROBLEM . . .. .. .. . ... 276
APPENDIX 3.C - LIFT SPECTRA . . . . . . . . . ... 291
REFERENCES . . . . . . . . oo v it i . 293
L Effect of Uniform Flow . ... .. ... ... ... 299
4.1 INTRODUCTION. . . . . . . v v i i 299
4.2 DERIVATION OF BASIC EQUATION . . .. .. .. 300
4,3 APFLICATIONTOFANNOISE. . . . . . .. .. .. 303
REFERENCES 338
5 Theories Based on Solution of Linearized
Vorticity - Acoustic Field Equations . . . . 341
5.1 INTRODUCTION . . . . . . .. . . .. ... 341

5.2 DECOMPOSITION OF LINEARIZED SOLUTIONS
INTO ACOUSTICAL AND VORTICAL MODES:

SPLITTING THFOREM . . .. ... ... .... 342

5.3 SOUND GENERATED BY A BLADE ROW . . . . .. 345
APPENDIX 5. A - SOLUTION TO CASCADE

PROBLEM . ... ... .. ... ... .. ..... 370

APPENDIX 5.B - EVALUATION OF SINGLE -
AIRFOIL INTEGRAL . . .. ... . ......... 378



6

APPENDIX 5.C - EVALUATION OF TERMS IN DUCT
COORDINATES . . .« « v v v e e v v e e e e e e e
REFERENCES . . . . o o o v v e v e v e e e e e e s

Effects of Nonuniform Mean Flow
on Generationof Sound. . . . ... .. .. ...
1 INTRODUCTION . . . o v v v e e v mi oo e e s
9 DERIVATION OF PHILLIPS' EQUATION. . . . . ..
3 DERIVATION OF LILLEY'S EQUATION . . . . . . .
4 INTERPRETATION OF EQUATIONS . . . . . . . . .
5 SIMPLIFICATION OF PHILLIPS' AND
LILLEY'SEQUATIONS. . . . v« « v v v v o v o
6.6 EQUATION BASED ON SEPARATION OF
ACOUSTICAL AND VORTICAL MOTIONS
6.7 APPLICATION TO MIXING REGION OF A
SUBSONIC JET . « v o v e e e e e e e e e e
6.8 SOLUTIONS OF PHILLIPS' AND LILLEY'S
EQUATIONS. . . v v v v e e v e oo s
APPENDIX 6.A - DERIVATION OF EQUATION (6-26) . .
APPENDIX 6.B - ASYMPTOTIC SOLUTIONS TO
STURM-LIOUVILLE EQUATION . . . .. . ... L
REFERENCES . & . o ot e e e e e e e e e e s

T DY OO

380
384

385
385
386
389
390

391

394

397

404
421

423
429






PREFACE

Aeroacoustics is concerned with sound generated by aerodynamic forces
or motions originating in a flow rather than by the externally applied forces or
motions of classical acoustics. Thus, the sounds generated by vibrating violin
strings and loudspeakers fall into the category of classical acoustics] whereas
sounds generated by the unsteady aerodynamic forces on propellers or by tur-
vulent flows fall into the domain of seroacoustics. The term aerodynamic
sound introduced by Lighthill (who developed the foundations of this field) is
also frequently used.

Because most of the dominant noise sources in airceraft are aeroacoustic
in nature. the literature in this field is often closely connected with aeronau-
tical applications. Up to this time, no systematic text devoted specifically to
aeroacoustics has been written - probably because the field is still in a fairly
early stage of development. But, after teaching this subject to a group of en-
gineers and scientists working on aircraft noise at the Lewis Research Center,
I concluded that such a text could serve a useful purpose. I felt that the book
should be moderately advanced and aimed at the reader with a knowledge of
“uid mechanies and applied mathematics at the master's degree level.

~here is sometimes a tendency in the literature to trv to separate aero-
acoustic problems into an acoustic part and an aerodynamic part and to treat
each one separately. In this book, I have not attempted to make this distinc-
tion and have combined all the acoustics and aerodvnamics needed to relate
the sound field to the basic parameters of the problem.

The first chapter is concerned with certain aspects of the acoustics of
moving media which are required in the remaining chapters. It also serves to
familiarize the reader with some basic concepts of classical acoustics. lis
main function, however, is to develop the mathematical techniques needed in

the remaining chapters. The second chapter introduces Lighthill's acoustic
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analoay and applies it to the case where the solid boundaries do not directly
influence the sound field. This is the situation in jet noise. A detailed anal-
vsis of subsonic jet noise and a qualitative discussion of supersonic jet noise
are given. The third chapter develops the acoustic analogy to include the ef-
fect of solid boundaries. The results are applied to the discussion of the sound
generated by struts, splitters, propellers, helicopter rotors, and so forth.
The effects of a uniform mean flow are included in the fourth chapter, and the
concepts are used to obtain detailed analyses of the various fan noise mech-
anisms. In chapter 5 the acoustic analogy approach is abandoned, and a direct
calculational procedure is developed. It is applied to the prediction of com-
pressibility effects on the sound generated by a blade row. Finally, in the last
chapter the effects nf a nonuniform mean flow are included, and equations are
developed which are intermediate between Lighthill's acoustic analogy and the
direct calculational approach. These results are used to predict the effects of
the mean flow field on jet noise.

Credit is given to the original source of an idea whenever possible. Al-
though some of the analyses and formulations developed are somewhat original
or extensions of analyses in the literature, the omission of a reference is not
meant to imply originality on my part. In fact, I wish to apologize in advance
if I have inadvertently not given credit to the originators of any of the ideas
which appear in this text.

yiii



CHAPTER 1

Review of A'cuustics of
Moving Media

1.1 INTRODUCTION

In order to make the material in this book available to as broad an audi -
ence as possible, portions of the first chapter are devoted to a review of those
aspects of classical acoustics and the acoustics of moving media which are
necessary for understanding the theory of aerodynamic sound. In addition, a
number of the mathematical techniques needed in the succeeding chapters on
aerodynamic sound theory are developed. It is assumed that the reader is
familiar with basic fluid mechanics.

A vector quantity is denoted by an arrow (K) and the magnitude of the vec-
tor by the same letter (A). The components of the vector K are denoted by
Ai with i equal to 1, 2, or 3. An asterisk (*) denotes complex conjugates.
Whenever possible, the capital and lower case of the same letter are used to
denote Fourier transform pairs with respect to the time variable. Overbars
(7) denote time averages, and brackets ¢ denote space averages. The letter
T (without subscripts) denotes a large time interval. Other commonly used
symbols are defined in appendix 1. C.

1.2 DERIVATION OF BASIC EQUATIONS

We shall now censider an inviseid non-heat-conducting fiow whose miotion
is governed by Euler's equation (i. e., the momentum equation for inviscid
flow? ‘
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p(E_V_+ -V-'.-V\_/'): -Vp +; (1-1)
the continuity equation

§Q+V-Vp+pv-v=pq (1-2)
oT

and the energy equation (which we write in the form)

is_+\7°VS=O (1-3)

eT

where V is the vector operator

* 9 30 ,p O

i—+j —+k—

ayl ay2 ay3

V= {vl,vz,v3} is the velocity of the fluid, p is its density, p is its pres-
sure, and S is its entropy. The time is denoted by 7, {yl,yz,yB} are
Cartesian spatial coordinates, q denotes the volume flow being emitted per
unit volume by any source of fluid within rhe flow, and Z denotes an exter -
nally applied volume force.

Now, in general, any thermodynamic property can be expressed as a
function of any two others. Thus, in particular,

p =pp,S)
Hence.
dp=1_dp+(EE) ds (1-4)
c2 \cSp
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where
c2=_1_ (1-5)
ap
ap S
Consequently,
ByTvp=L(®, 5 vp (1-6)
aT c2 0T

For a steady flow with velocity ‘-;O’ pressure D, density o9 2nfrop~
SO = S(po,po), and ¢q = c(pO,pO), equations (1-1) to (1-3) and (1-6) become

NIRAT R
V'povozo
> (1-7)
VOVSO=0
V~Vp :csz.-v
0 0-% "n" " Po _

provided there are no external forces or mass addition.

Consider an unsteady disturbance with charactembtlc length A traveling
at a propagation speed whose typical value is C through a fluid in which the
velocity, pressure, and density are otherwise determined by equations (1-7).
This dlsturbance 1ntroduces chanves in veloc1ty pressure, density, entropy,
and 02(u =v -vO, p =p- Py, P "=p - Lo S'=8 - Sg- c2 = c2 -c,%, respec-
tiveiy) as it passes by a tixed observer.” These changes all occur an tne nme
scale T = 1/f, where f = C/)\ is the characterlstm frequency of the disturb-

ance, The propagating disturbance is shown schematically in figure 1-1.

IThe flow velocity U induced by the passage of the disturbance iz called ¢ £

acoustic particle velocity. It is entirely distinct from the propagation speed C of the
disturbance.
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Figure 1-1. - Propagating disturbance.

The amplitude of the disturbance is measured by the magnitude of the
fluctuations u, p', p', S', and 2,

which this amplitude is so small that not only is

We shall consider only those flows for

lg] << C = M, (1-8)

but also® p' << (Pg}» 0 <<{pg), 8" <<(8p), and 2’ <<<cg). Then the
amplitude of the disturbance can be characterized by a dimensionless variable

€ such that
0 <e <1 -

and

21he first inequality requires that the velocity induced by the disturbance be small
~~mnnend with its propagation speed. The remaining inequalities ensure that the flue-
tuations in thermodynamic properties are small relative to their mean background

coluez,

4
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[T]/C = 0(e)

p'/(pg) = Ofe)

(1-10)

~

p'/(pg =0l

s'/<sO> = O(e)

c2'/<cg) =0(e)

Inequality (1-8) involves the assumption (to be verified subsequently for spe-
cific cases) that for sufficiently small disturbances the propagation speed c
is independent of the amplitude of the disturbance.

We allow WO, to be of the same order as C. Then since the changes of
time and length associated with the disturbance occur on the scale of T) and
A, respectively, it is reasonable to introduce the nondimensional variables3

T= T/szf'r ZO:pO/<pO>
Vi = ¥/ So = Sp/(Sp

‘-;O = \—/'O/C cg = cg/(cg>

~ _ 2 :_—_/N

Py = (Pg - (P ¥/ oy (vy)) u=1u/Ce

p =p'/(pye § =s"/(sy e
~t Yy ~2' 2., 2.
1y :p/\po>€ € =C \CO/E

4
) . . . ] . . .
I{ojcall that the pressure variations in a steady inviscid flow are of order
<l')0> <V6>' '
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When these quantities are substituted into equations (1-1) to {1-3) and (1

we obtain after subtracting out equations (1-7)

(po + €p') ,:2—;+ VO-VG+ u- V(’VO + EH)]+ p'_x;O- VVO

P By = Ty, T

= {Po) [EBN_ v Vp'+uV(0+€p
2 T

(cgr{py

-6),

But since the nondimensionalization has been specifically chosen to make the
dimensionless variables of order 1, the inequality (1-9) shows that the terms
multiplied by € in these equations can be neglected to obtain, upon reverting

to dimensional quantities,
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p0<-a-:+vo-‘v“u+u'Vv0)+pv0-Vvo--Vp+;

ap' ]
.a_+V (pou+pv0)—p0q
T L (1-11)
s’ = v
— +VA VS +u.VS,.=0
cT 0 0

2 (o', = - 2'— p | = —

<o _£_+v0.Vp'+u-VpO+c VO-VpO=i+vO-Vp +u Vp,

aT T J

These equations are frequently referred to as linearized gas-dynamic equa-
tions. We have shown that they govern the propagation of small disturbances
through a steady flow.

Perhaps the simplest nontrivial solution to equations (1-7) is provided by
a unidirectional, transversely sheared mean flow wherein

VO = EU(yz) p, = Constant  p, = Constant (1-12)

and I denotes the unit vector in the uy direction. This velocity field is il-
lustrated in figure 1-2. For several reasons the main emphasis will be on
cases where the background flows are of this type.4 The {irst is the relative
simplicity of this flow. Since the equations governing the propagation of sound
in a moving medium are, in general, quite complex, it is helpful to consider
one of the simplest cases. The second reason results from the fact that in the
following chapters only the effects of velocity gradients on aerodynamic sound
generation are considered and not the effects of gradients in thermodynamic
variables. Since the flow field given by equations (1-12) has only velocity gra-
dients and no pressure or density gradient, it is particularly suitable for il-
lustrating the effect of the former. Finally, it turns out that in many of the

4
A more complete treatment of the acoustics of moving media from a diffcrent
point of view can be found in Blokhinisev (ref. 1),



AEROACQUSTICS

y

N

Figure 1-2. - Unidirectional, transversely sheared, mean
flow.

cases for which the study of aerodynamic sound is important the mean flow

field is, to a first approximation, of the type given by equation (1-12).
Inserting equations (1-12) into equations (1-11) and eliminating o'

between the first and last equation shows that

where

(1-13)
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and we have dropped the prime on p so that it now denotes the fluctuating
pressure. This will be done whenever no confusion is likely to result.

The operator DO/DT represents the time rate of change as seen by an
observer moving along with the mean flow. The third equation (1-13) there-
fore states that the entropy does not change with time for such an observer.
Thus, if the entropy were uniform and steady far upstream, it would have to
be constant everywhere. But equation (1-4) shows that, whenever the entropy
is constant,

-

c2

and the fourth equation (1-10) shows that for small e,

02 = ccz) + O(e)

Then, since cg is constant, integrating the previous equation from the back-
ground state implies that

p-=-pP
P .7 "0_.p" for S-=Constant (1-14)

The quantity on the right is called the condensation.
Since

D,u D _ au
v. 0 . 0gg.,2U 2
Dr Dt Y4 2Y4

taking the divergence of the first equation (1-13), operating with DO/‘DT on
the second, and subtracting the result give
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2
D cu - D.q
2 1 0p+2 2 dU _ 0

V' - P ——*= '/‘po—
2o 0y an, D7

(1-15)

Because this equation has two dependent variables, it cannot by itself be
solved to determine the disturbance field. However, in the special case where
the mean velocity U is constant, the last term on the left side drops out and
we obtain the equation

2
D - Dnq
Vzp-_l__(_)_pzv- / -pOL (1-16)
2.2 D~
COD‘T

which (together with suitable boundary conditions) can be solved to unambig-
uously determine the fluctuating pressure p. Once this pressure is found,
the acoustic particle velocity U can be determined from the first equa-
tion (1-13). Equation (1-16) is an inhomogeneous wave equation for a uni-
formly moving medium. The reason for this terminology will be clear
subsequently.

Equations (1-14) and (1-16) show that, if the entropy is everywhere con-
stant, the density fluctuation also satisfies an inhomogeneous wave equation

2

D - D,a

Vzp I p= 1(g. / - Py _9_> for S = Constant (1-17)
2p2 o2 D7

0 o0

Finally, when U =0, equation (1-16) reduces to the inhomogeneous wave equa-
tion for a stationary medium or simply the inhomogeneous wave equation

2 -
vzp_%iﬁzv.;-poa_q (1-18)
o 872 er

which forms the basis of the field of ciassical acoustics.

10
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We now return to the general equation (1-15). This equation closely re-
sembles the wave equation (1-18) for a nonmoving medium with 2 /77 replaced
by DO D+ However, the additional term on the left side involves the velocity
and must be eliminated in order to obtain a single differential equation for the
pressure. To this end, we differentiate the y2-component of the momentum
equation in (1-13) with respect to y; to obtain

o~2___¢p ,F2 (1-19)

Then operating on equation (1-15) with DO/D’T and substituting equation (1-19)
into the result yield

2 ’ 2
D D 2 - 2 D
D_civzp-_lz__% .9dU eép _0g.7. ﬂ_/g-po_ﬁ)_qu_zo)
‘ ¢2 b+ dyg oy9dyy D7 dyy 9¥4 D

Thus, in the general case of a transversely sheared unidirectional mean flow
the wave equation is of higher order (in two of the variables) than it is for a
uniformly moving medium.

1.3 ELEMENTARY SOLUTIONS OF ACOUSTIC EQUATIONS

In principle, all acoustic phenomena which occur in a iransversely
sheared flow can be analyzed simply by solving the wave equations derived in
section 1.2. In this section we shall obtain a number of simple solutions to
these equations which either illustrate certain physical principies or serve is
tools to synthesize more complicated solutions. We shall first consider the
case of a stationary medium.

1.3.1 Solutions of Stationary-Medium Wave Equation

The basic properties of the Fourier series and transforms which are used
iq this text are listed in appendix 1.A. The notation and sign conventions
adopted therein are adhered to whenever possible.
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Multiplying both sides of the stationary-medium wave equation

vzp-l_a_l’:v./_poﬂl_z_y (1-21)
c2 872 T
0
by ein and integrating by parts over the appropriate time interval reduce

this equation to the inhomogeneous Helmholtz equation

2
v (eNlp-T (1-22)
o

where P and T are the Fourier coefficients or Fourier transforms (depend-
ing on whether the process is periodic, stationary, or vanishing at «<)of p
and vy, respectively. (We shall henceforth refer to quantities such as P and
I" simply as Fourier components.)

Solutions to equation (1-21) can be obtained by inserting the solutions to
equation (1-22) into the appropriate Fourier inversion formula. If the source
terms and boundary conditions are simple harmonic functions of time, the so-
lution p of equation (1-21) is also a simple harmonic function. That is,

D = Pe-icu'r

1.3.1.1 Plane wave solutions. - The simplest case occurs when the re-

gion under consideration is all of space and there are no sources present.
Then equation (1-22) becomes

2 \ 2
AvARSENTY Bhadl P=0 (1-23)

The three-dimensional Fourier transform of this equation is
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2 w 2 w W
K[V 2=k +__><__-1< #=0
o €0/ \ 0

»

p :/ 2@V dk (1-24)

where

But since x5(x) = 0, this equation has the solution

?=A@m6<-3>
o

where A is an arbitrary function of the unit vector K= E/k in the k-
direction. Hence, the solution to equation (1-23) is

e o]

I ‘ - 2 ~ iw/cglky
P - A(K)elk'y ) (k - .‘_‘..>k2 dk dg = <i> Ak)e 0 de  {(1-25)

o o

—

0

where dx denotes the element of solid angle.
When

- 56 - 6,)8(0 - @)
Alg) = A 0 0

sin g
where ¢ and ¢ are polar coordinates determined by
k = {sin ¢ cos ¢, sin ¢ sin ¢, cos 6} (1-28)

and 0g> 9 bear a similar relation to the fixed unit vector :O’ equation (1-25)

becomes
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N\ ikney
p :(i> Ae 0 , (1-27)

where kO = w/c0 and 1_{0/1(0 = ;O‘ Equation (1-25) shows that the general so-
lution of equation (1-23) is simply a linear superposition of solutions of this
type. Hence, the general solution of the homogeneous wave equation

vip=L12P. (1-28)
2
o d 72
can be expressed as a superposition of solutions of the type
i(ﬁd y-w
p = Ae where ko = w/co (1-29)

called plane waves, 5 The constant A is called the complex amplitude of the
wave, <I>0 =arg A = tan‘1 Jm A/Re A is called the phase constant, and

-

=k - ?-wnqao (1-30)

is called the instantaneous phase or simply the phase.
When the solution to equation 71-28) is given by equation (1-29}, the vres-

sure at each fixed point 37 executes a simple harmonic variation in time
whose amplitude is ,’A [ The angular frequency of the motion is w: its
frequency f is f = «/21 and its period Tp is Tp = 1/f. The vector EO is
called the wave number, '

The pressure oscillations at every point have the same frequency and the
same amplitude [A { However, the pressure oscillations at different points
will, in general, not be in phase. The difference in phase between any two
points, say 371 and 372, is given by 1?0 . (371 - 372) and hence remains constant
in time. This also shows that the phase is constant on any plane perpendicular
to the I\'.O-direction. Since the trigonometric functions are periodic, with

=
When complex solutions to the wave equation arc given, generally the solution to
the physical problem is understood to be the real part,

14
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period 27, the pressure fluctuation at any two points will be in phase when-
ever the distance (E.O/kﬂ) . (;1 - 372) between the two points measured along the

l-fo-direction is

This distance, which we denote by A, is called the wavelength., Thus, at any
time t =t,, the pressure will vary along the l?o-direction in the manner
shown by the solid curve in figure 1-3 and will remain constant along any plane
perpendicular to this direction. At a time 1/4 period later, the wave will ap-
pear as the dotted curve. Hence, the individual pressure oscillations at each
point are phased in such a way that they result in a wave of unchanged shape
moving through the medium in the EO -direction. In other words, the pressure
oscillations at each point are passed on to adjacent points with a phase relation
that causes them to propagate as a wave with unchanging shape. Every sur-
face of constant phase & (given by eq. (1-30)), called a phase surface, must
be perpendicular to the Eo-direction and move along with the wave, as shown
schematically in figure 1-4.

— Position of wave at time t
*\ « Position of wave 1/4 period later
AR

} ]

:
/A
AN

/

T

A
- /"\\
» \
/ \
,‘/ A
/

Figure 1-3. - Piane wave propagation 1/4 period after time 1.

N
NN
A
\
p 5
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|
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i

il
i

Figure 1-4, - Motion of phase surtfaces for plane wave.

It can be seen from equation (1-30) that the common velocity of the phase
surface and the disturbance is cy- This velocity is called the speed of
sound. 6 We have therefore shown that, at least in this special case, the ini-
tial assumption used in deriving the basic wave equations (i.e., that the prop-
agation speed of a small disturbance is independent of the amplitude of that
disturbance) is justified.

1.3.1.2 Solutions in arbitrary regions. - When the region in which the
wave equation is to be solved is not all of space, the solution is usually not ex-

6For an ideal gas, this propagation speed ¢y is given in terms of the absolute
of the background state by

P
cq = vy 2= ‘/-)/I{(ﬂo

Py

temperature © 0

which is equal to about 335 m/sec (1100 ft/sec) in air at standard conditions,

16
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pressed us u superposition of plone waves bt raiher ag the spernosiil »
number of eicenfunctions P(Y of Helmholtz's equation, called modes, which
are appropriate to the region under consideration. Thus, the solution to the
wave equation will appear as the sum or integral (or perhaps both) of a number

of simple harmonic solutions Pa(37)r 1“7 or upon expressing PO[ in com-
plex polar form, this becomes
A(-}-;)ex[kS(}")-w T

-

where k = wicy and S and A are real__.
We may regard the quantity & = Kk[S(y) - COT} as being the analogue of the
instantianeous phase which appeuared in the piane wave solutions discussed in
section 1.3.1.1, At any given instant of time, & will be constant on any sur-
face S(v) = Constant. The surfaces of constant phase are called wave fronts
or wave surfaces, and the function S(§) is called the eikonal. However. the

amplitude of the wave A(;) is not necessarily constant on the wave front as it

is for plane waves.
Now the wave surface

K[S(Y) - ¢y7] = % = Constant = C,

will, in general, move with time. Thus. the point v on & - Cl at tire 7
will move to the point v « &y aiime r+ 7+ and

K[S(V) - cq7| = K[S(F + &) - col 7+ 7]

= K[S(¥) + V8- 4y - col7+ a7+ O /401

|

This shows that, to firsf order in &7,

\"S-ﬁ?:c s

0

Hence, in the limit as A7 —0.
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vs (‘L") = ¢, (1-31)
d7 d=Constant

But since VS is always perpendicular to the wave fronts, vS/ fVSJ is the
unit normal to these surfaces (see fig. 1-5). And since (dy/d T)cb:Constant is
the time rate of change of position of a point which moves with the wave front
$ =C,. ‘

is the velocity of the wave front ¢ = C1 normal to itself. It is called the
phase velocity, and equation (1-31) shows that

o
V. o= — (1-32)
P jvs|
{ / (\
\ RN
$ - Cy attime T+0T

N &y
g—

dr

$ «Cy attime t

Figure 1-5. - Wave fronts.
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1.3.1.3 Point source solutions. - Returning to the general solution (1-25).

we now take A to be independent of x. Then upon introducing the polar co-
ordinates given by equation (1-26) with the polar axis now taken along the y-
direction, we obtain a solution

21 T
w 2 i(w/co)y cos §
P=<—> A e sin g dg de
o0
0 0

- o (i)ﬁei(w/co)y e <i>é e-i(w/co)y

o 1y Co/ 1Y

to Helmholtz's equation (1-23) which depends only on the magnitude v of f;.f
In fact, it is easy to see that, if y # 0, each of the terms

, (@) A /)y
o iy

in this solution is itself a solution to equation (1-23). Hence, any superposi -
tion of solutions of the type

T iw(xy/ca-7
0. 0 (1-33)
4Ty

satisfies the wave equation (1-28). The wave fronts are given by
é = tky - w7 and the eikonal is equal to 1y so that

[vs|=1
But in view of equation (1-32), this shows that the phase velocity is again
equal to the speed of sound <y Since the phase surfaces of the snlutinn with

the upper sign move in the direction of increasing y, this solution must rep-

10



AERQACQUSTICS

resent an outward -propagating wave. The solution with the lower sign repre-
sents an inward-propagating wave.
In any region including the origin y = 0, however, the equation

T, zi(w/cpy
pt - _0 e 0
47y

does not provide a solution to the Helmholtz equation (1-23) but rather satis-
fies the inhomogeneous Helmholtz equation

2 -

vlpt . (i> P = _AS&(Y) ‘ (1-34)
Co ,

with a delta function source term at the origin. In order to show this, we

shall need to use the divergence theorem

/v-Kd§:/ﬁ-de (1-35)
v S

where A is any vector and v is an arbitrary volume bounded bv the surface
S with outward-drawn normal n. Thus, if v is taken to be a sphere of ra-
dius r, centered about the origin ; =0 and if d denotes an element of
solid angle, this shows that

r .

‘It will be scen subsequently that this type of behavior is quite typical of solutions
roany nounded source region. Hence. solutions which behave like (1, 'v‘;u”"“ for larac
vy are called outgoing wave solutions, and solutions which behave like (]/\')v"‘k\' are
called mmgorng wave solutions.,

20
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r
2 - Ayt . 2 0
vipt , (£) pEl4y - rg (ﬂ_) ao + (= Piy2 dy dQ
v 47 47 Y0 7
‘ #(w/cyr
=T, [sir, £ - 1le 0™ 0
0 0 c
0
2 0 ey
, +H1(W/CHIY
$iT, w L e 0" ay
c0 cw
0
= -1"0
But since

and 5(;‘) = 0 in any region where pt satisfies the homogeneous Helmholtz
equation, we conclude that P* satisfies equation {1-34). By shifting the loca-

tion of the origin, we find that

ot . IQ_ eﬂ(w/co)r
47r

with
r = l)-(. - ﬂ

satisfies the Helmholtz equation

21



AERQOACOUSTICS

2 - -
vipt (@) p*_ Too& - )
o

with a delta function source term at the arbitrary point X.
Taking the inverse Fourier transforms shows that

-iw(TEr/cy)
p*=1— e 0 I“Odw-_l_yo rz L (1-36)
47r 47r o

{(where 1"0 is the Fourier transform of yo) satisfies the inhomogeneous wave

equation

2
v . L& \pte “vo(T 6 - X) (1-37)

2,2
o o7
with a point source of strength yo(ﬂ located at the pomt X.
In order to interpret this result, notice that rp is constant everywhere
along each line CeT =T = Constant in the r-7 plane shown in figure 1-6.

Figure 1-6. - Propagation of spherical waves.
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It therefore represents an arbitrary pulse propagating outward in the radial
direction with unchanged shape. The propagation speed is again equal to the
speed of sound o Hence, p+ represents a pressure pulse which propagates
outward with unchanged shape in the radial direction with its amplitude dimin-
ished by the factor 1/r.

Upon choosing Y0 to be the delta function 6&(t - 7}, it follows from equa-
tions (1-36) and (1-37) that

cO0=_1 5(r-t+ X (1-38)

4rr Cq

is an incoming wave which satisfies the inhomogeneous wave equation

2
v2 L 2 N\G0 - 5(r-16F - D (1-39)

2.2
o oT
with an impulsive point source acting at the time t and located at the point X.

Since r is always positive, this solution together with all its derivatives
must certainly vanish whenever t < 7.

1.3.2 Solutions to Acoustic Equation for a Uniformly Moving Medium

Now suppose that the velocity U of the medium is constant so that the
wave motion is governed by equation (1-16). The equation closely resembles
the stationary-medium wave equation {1-18). This resemblance is not acci-
dental, for suppose we carry out the analysis in a coordinate system moving
at the constant velocity U. Then the medium ought to appear at rest, and
therefore the equation for sound propagation in this coordinate system ought
to be the stationary-medium wave equation. In fact, introducing the change
in variable

¥ =y-iUur for 7 =7 (1-40)
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into equation (1-16) results in the stationarv-medium wave equation

2
g2 _ 1 ¢ p:v'.z_poe_% (1-41)
c2 8”12 T
0 )
where V' denotes the operator
FR I P

oy g

Solutions to the moving -medium wave equation (1-17) can therefore frequently
be obtained simply by transforming solutions to the stationary-medium wave
equation (1-41) back to the labdratory frame. Thus, transforming the plane
wave solution

to the wave equation (1-41) (with the source term omitted) back to the fixed
frame by equation (1-40) shows that

D= eil?- 3_1’-('4."4-; U~

where U = Ui. This solution represents a plane wave in the fixed laboratory
frame with a frequency

wzw +k-U=w'(l+Mcos s

where M = U«"cO is the mean-flow Mach number and ¢ is the angle between
the direction E/k of propagation and the mean flow direction (see fig. 1-7).
The phase speed of the wave is

vV =X

Ly ~ , — ‘T -
D E = {1 + M cos 4leg = ¢y~ < CcOS ¢
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=4

Figure 1-7. - Plane wave propa-
gation in a constant-velocity
medium.

This shows that the wave is traveling with a speed equal to cqy> the prop-
agation speed relative to the medium, plus U cos @, the component of the
velocity of the medium in the direction of wave propagation. The frequency in
the laboratory frame is increased if the medium has a component of its veloc-
ity in the direction of wave motion and is decreased if it has a component in
the direction opposite to the wave motion. However, the wave has the same
wavelength, X = 27/k, in both reference frames. This is simply a conse-
quence of the fact that the moving wave pattern must appear the same to both a
stationary and moving observer and only the frequency and apparent velocity
of the wave can differ.

1.3.3 Solutions to Acoustic Equation with Velocity Gradients:

Geometric Acoustics

Returning now to the general moving -medium wave equation (1-20), with .
source terms neglected, we find that the Fourier components of the pressure
satisfy the transformed equation

2 2 »
Gl s i 2 \e2p ofk+iMm 2 p|-2dM &P _g (1-42)
Pyl Pyl dy2 F}'ZP}'I

~ where M = U/cO is the mean-flow Mach number and k = w/co. Then the so-
luticn to equation {1-20) will be the sum or integral of terms of the form
pe i T
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As in the case where the mean velocity is zero, we write P inthe com-
plex polar form

-

P = A (1-43)
so that the general term in the solution is of the form

1k[S(37)-cOr] oty

A[)e
Thus, the wave fronts (surfaces of constant phase) are givenby ¢ = k[S(S/') -
o 7] = Constant; and the phase velocity is given by Vp = co/ Ivs|.
In order to simplify the situation, we shall consider the case where the
velocity varies slowly with Vo Tr;;us, we require that the length L over
which U changes by a unit amount® be so large that

1

€ = <<1
L

This means that L/Xx >> 1/27 or x << L. Hence, the velocity changes occur
over a distance of many wavelen~ths,

We are interested in obtaining solutions to equation (1-42) which are ana-
logous to the plane wave solutions discussed in the preceding sections. Since
the mean velocity varies slowly on the scale of a wavelength, we anticipate
that equation (1-42) will have solutions which behave locally as plane waves.
Thus, suppose there exists a solution of equation (1-42) such that

kS(y) = kLS, (n)
(1-45)
A = A )

8This is the length L for which

L dU

Udy, - W
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where 1 =V L. Sy(0) = 0 and the derivatives of S, and Ay with respect to
1, oare of order 1 (i.e.. SO and AO change on the scale of 7). Then expand-
ng S0 and AO in a Taylor series about 1 = 0 shows that for kv = O(1) or
y = 00)
- /2 2
— Ve
A = A0 + - (VAglT g + O(e“)

kS = kL[ﬁ' (%"SO)H:O + 0(62{\

where

It follows that

where we have put
k = k(VSO)ﬁ:O

Hence. for changes in n of the order of a wavelength, the solution (1-14) re-
duces approximately to the plane wave solution

—_—

i(k-;:—w.'
AO(O)e

—

in order to find an expression for this solution which is valid for all
values of v (and not just for y = O(\)), we nondimensionalize the length scales
in eauation (1-42) with respect to L. introduce equation {1-43) for P with A
and S uiven by equation (1-45), and neglect terms of order € = (kL)“‘ in the
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resulting equation. Then upon reverting to dimensional quantities, we obtain
for the real and imaginary parts of this equation, respectively,

9 R .
A-Mﬁ 2VA - VS + AveS - 3m2a &8 1 w8 \am FA
\ Yy " ayf ¥ VY
M Lalvs|2i M A IS Ly
Eyl Pyz cyl ry2

and

\2
1-M Y s 1-m B8 \a-o
cyl ayl .
Since A # 0, the latter equation has two families of solutions. The interesting
solution is

fos)=+ft -Mm 28 ) 4f1 - Y. vs (1-46)
cy c
1 0

where U = iU is the velocity vector. Since the unit normal to the phase sur-
face n is given by

A8
|vs]|
and Ucons ¢ - U - n isthe component of mean velocity normal to the wave

fronts (see fig. 1-8), equation (1-36) can be written as

jvs| = z(1-YC0S¢€ |ys|
‘o
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————Yy-axis

$ =Constant, S = Constant

Figure 1-8. - Velocity of phase surface.

o

lv§| = — —
UCOSQ:]:CO

Now suppose the flow is subsonic. Then since (VS,’ > 0, only the plus sign
can hold and

o

|v8| s ——
Ucosg+c0

The phase velocity Vp is therefore given by

V. = =Ucos0+c0

This is identical to the expression for the phase speed in a uniformly moving
medium given in section 1.3.2, In order to interpret this result, consider an
initially plane wave moving to the right in a velocity field which is increasing
in the upward direction, as shown in figure 1-9. The phase velocity will be
larver on the upper part of the wave surface than on the hottorm. HYence, the
velocity of the wave surface normal to itself will be larger on the top than on
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{
j /
./ /
~~~~~ L ) /
~~._ / oy
- // f
~
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/ ~
V4 ™~
—— / 1 >
<
/
y; ~~

Figure 1-9. - Bending of phase surface by mean fiow.

the bottom. As a consequence, the wave front will bend in toward the lower
velocity region as it moves. Similarly, if the wave is traveling to the left, it
will bend upward toward the higher velocity region.

1.4 INTEGRAL FORMULAS FOR SOLUTIONS TO THE WAVE EQUATION

1.4.1 General Formulas

Before proceeding with the material of this section, it is helpful to recall
three well -known integral formulas from vector analysis. Thus, let U7 de-
note an arbitrary region of space bounded (internally or externally) by the sur-
face S(7) (which is generally moving), and let A be an arbitrary vector de-
fined on ¥ 7). Then the divergence theorem (1-35) states that

_/ A - nds(y) :/ v.Ady (1-47)
S(7) U 7)

provided the integrals exist. U VS(S/., 7) denotes the velocity at any point v of
the surface S(7), the three-dimensional Leibniz's rule shows that

4

¥ dy = L T \"/S - Aw dS(y) (1-48)
3 - ‘

cT

(7 u7 S(7

=1
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for any function Wiy, 7 defined on 7). Finally, it is a direct conscquence

of the divervence theorem that Creen's theorem

)

(q, vy fi’) as(y) = @s2 - vvindy (1-49)
S(7) Y

&n &n
¢ c T)

holds for any two functions ¥ and ¢ defined on v. In this equation we have
written & ¢n inplace of n - W.

In this section these formulas will be used to derive an integral formula
which expresses the solution to the inhomogeneous, uniformly moving medium,

wave equation

2
v - L0 po 5@, D (1-50)

in terms of a solution G(y, T‘;,t) of the equation

D2
O — —
_—2G = -6t - DB(x - y) (1-51)

D

vl - L
&
for an impulsive point source. 9 This result is used extensively in subsequent
chapters to deduce the effects of solid boundaries on aerodynamic sound
generation.

It was shown in section 1.3. 1.3 for the special case of a stationary me-
dium. that, equation (1-51) possesses a solution (given bv eq. (1-38) at all
points of space which together with all its derivatives vanishes for t 7. In
any region 1 which does not include all of space, equation (1-51) possesses
many such solutions. Hence, let G denote any solution of equation @1 =5 1

satisfving the condition

9
Goi= callod aotundanented =olution S the win o cquaiion,

3
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“OG
G=—-""-=0 for t T (1-52)
D~

Then applying Green's formula to p and G and integrating the result with
from -T to +T (where T is some large interval of time) show

respect to 7
that
T T _
(Gﬁ—pfg>ds dr= (GV2p -pV2G)d§7‘d7
T Js(n v v @n T Ju
T
1 D; D,
= = G—p-p—Gjdydr
2 2 P
cg St Jun ' PT ‘
T —
- [Gy(y, N -6(t - D8y -x)p]dy d~
-T 7
(1-53)
But since
D2 Dg . [ Dgp DG\ Dyi D40
G—Lp-p——G|=—|G—= -p + U |G -p
D72 D72 T DTt Dt Eyl D+ D~

/ D(2) 2\ _ /' mp DA\
\G pP-p )cl) =4 G_“ -p )ci\
» 2 dr T Dt
{7 D- D- (7
- . / DO‘) DOC\ -
+ (Ci1 -V ) -n KG -p l‘ciS«y)
S: - N+ D~
v
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Hence,
T —_
DZ 3G\ _ Dp DG\ 7T
G p-p dy d7 = G— -p —\dy
2 2 D~ D .
& SRR D7 U7
T , Op DOG
- Vn -p —— dS(V
-T S(7) D7 D7
where
v =(V,-10) - n (1-54)

is the velocity of the surface normal to itself relative to a reference frame
moving with the velocity jU. The causality condition (1-52) implies that the
integrated (first) term vanishes at the upper limit (7 = T). At the lower limit
this term represents the effects of initial conditions in the remote past (ref. 2,
p. 837). Since in most aerodynamic sound problems only the time-
stationary10 (and not the transient) sound field is of interest, this term will be

omitted. 11 Hence,
Dg DOG -
-p d7 = — -p._dS(y)dT
A7) DT D72 S( ) b7, ‘

10, . .
See appendix 1, A, sccetion 10 AL 3,

11, . e -
[t is assumed that the boundary condition is such that the effect of anyv initial
state will decay with time, In any event, it is alwavs possible to require that

Dnp
D _”L 0 at - =T
D
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Substituting this result into equation (1-45) and carryving out the integrals

over the delta functions show that

T e — — —
/ dr / vy, NGy, 7]x,t)dy
-T U7

T V. D
. dr G, 7x,0 [+ 2 0\pi, 2
cn 2 DT
o)
-T S(7)

- VI DN\ _ . _ pEY
-p@, AL 2 9GEH, 7lx, 0 |as@) =
én c2 Dt 0
0

if X isin #(t)
is not in wu(t)

(1-55)

le

if

This equation provides an expression for the acoustic pressure at an arbitrary
point X within a volume v in terms of the distribution y of sources within

v and the distribution of the pressure and its derivatives on the boundary of v.
We make extensive use of it in chapters 3 and 4 to predict the emission of
aerodynamic sound in the presence of solid boundaries.

The region Y 7) in equation (1-55) can be either exterior or interior to the
closed surface (or surfaces) S(7). However, for exterior regions the solutinn
P(?, 7} of equation (1-50) must be such that the surface integral in equa-
tion (1-45) vanishes when carried out over any region enclosing S(7) whose
boundaries move out to infinityv. This will usually occur whenever p(v, 7 be-
haves like an outgoing wave at large distances from the source. When applving
equation (1-55), it is necessary to be sure that the direction of the outward-
drawn normal n to S is always taken to be from the region r to the region

on the other side of S.

The preceding argument applies just as well to the case where the sur-
face S(7) is absent. Hence, equation (1-55), with the surface integral
omitted, holds even when the region v is all of space. However, in this
case, there is only one possible solution to equation {1-51) which satisfies ron-
dition (1-52) and vanishes at infinity. When U = 0, this is the function GO
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given by equation (1-38). Then, in this case, equation {1-55) becomes

- T - - = -
p(x,t) = /I‘ /y(y, T)Go(y, 7]x,t)dy d T (1-586)

This equation can be used to compute the pressure at any point from the known
source distribution y whenever the region of interest is all of space.

More generally, if the surface S is stationary and the velocity U of the
medium is zero or tangent to the surface (so that n - 1 = 0), the normal rel-
ative surface velocity VI'1 becomes the normal surface velocity

V.= Vs - n (1-57)

and equation (1-55) reduces to the usual integral formula for the wave equation

T T - e = ..
- p(x,t) if x isin v
dr vG dy + dr Ga_p.-p_a_GdS:{
-T v T g\ ¢on on o - if is not in v

X
(1-58)
Of course, when U =0, p and G satisfy the inhomogeneous stationary-
medium wave equations
2 1 sz -
v .._2_‘__: -y, 7 (1-59)
o 0T '
2. 1 2% -~ =
VG - — —— = -5t - B(x - V) (1-60)
cg 972
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1.4.2 Boundary Conditions: Green's Function

1.4.2. 1 Definition and properties. - Up to this point we have not explic -

itly taken into account the effects of solid boundaries on the sound field. The
presence of such boundaries imposes certain restrictions (that is boundary
conditions) on the allowable solutions to the wave equation.

For the small-amplitude motions consistent with the acoustic approxima-
tion the boundary conditions are usually linear; that is, they consist of linear
relations between p and its derivatives (and perhaps integrals) specified on
the boundary of the region in which the solution is being sought. For example,
in the case of a stationary rigid surface the boundary condition arises from the
requirement that the normal acoustic velocity u - A vanish at the surface.
But in this case (since the mean flow, if it exists, must be tangent to the sur-
face), it follows from the first equation (1-13) (with T = 0f that

®_qv p=0 for y on a fixed surface
on

This provides a condition which the solution p to the wave equation must sat-
isfy on the boundary.

Now whenever solid boundaries are present, equation (1-55) cannot, in
general, be used directly to compute the solutions to the inhomogeneous wave
equation (1-50) because the pressure and its derivatives which appear in the
surface integrals cannot be specified independently and the relation between
them is a priori unknown. However, whenever the solutions of equation (1-50)
satisfy linear boundary conditions, this difficulty can, in principle, be elim-
inated by imposing additional restrictions on the fundamental solution G. The
resulting function is then called a Green's function. We shall restrict our at-

tention to the case where the boundary surfaces are stationary12 and the mean
flow, if it exists, is tangent to the surface. In this case, equation (1-33} re-
duces to equation (1-58).

Y<I¢ the motion of the surface has o small amplitude, we can treat the surface 15
stationary at its mean position and take account of its motion through boundary condi-
tions at the mean position of the surface.
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A Green's function for a region v is defined to be a solution G(?, 7[;, t)
to the inhomogeneous, uniformly moving medium, wave equation (1-51) which
satisfies linear homogeneous boundary conditions on the surface of S as well
as the causality condition (1-52). If the region v extends to infinity, we re-
quire, in addition, that G vanish as y'1 when y —«, Then the function G0
defined by equation (1-38) is the Green's function for the case where the region
v 1is all of space and the mean flow is zero. It is called the free-space
Green's function.

When the mean flow is zero, the Green's function satisfies the reciprocity

relation 13

G(y, 7]X,t) = G(X, -t|¥, -7

Inserting this relation into equation (1-59) shows that

o 2~ = _I= - -
V}%.G(y,'r[x,t) - LM = -5t - DX - V)

cg at2
where
-~ 2 -~ "\2 A~ 2
vi=ii .52 Lk 5_2
X 2 2
axl ax2 8x3

Thus, G(?, ’rf}.{’,t) also satisfies the wave equation in the variables X and t.
But since condition (1-52) shows that G vanishes for t < 7 we can interpret
G as the pressure field at the point X and the time t caused by an impulsive
source located at the point V at the time 7., The causality condition {1-52)
then ensures that events will propagate forward in time. The moving-medium
Green's function can be interpreted in a similar fashion.

Suppose that it is desired to find a solution to the inhomogeneous wave
equation (1-50) subject to either of the linear boundary conditions

5 .
1"\\’0 omit the proof of this important result. The interested reader 15 voferred to

ref, 2, scction 7. 3.
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Case A: P L b(y, Mp = a(y, D

én
or for y on S (1-61)
Case B: p= a(y, 7

where b and a can be any function of ; and 7. And suppose that a Green's
function can be found which satisfies the homogeneous boundary conditions

Case A: eGly, 7]%,8 b(y, NGy, 7/x,t) =0
cn .
for y on S (1-62)
Case B: G(y, 7]x,t) = 0

Then inserting the corresponding pairs of boundary conditions from equa-
tions (1-61) and (1-62) into the surface integral in equation (1-58) shows that
for X in v

T
Case A p(;(., t) = / dr / G(g;, Tf;,t)'}/(y, T)dg;
-T v
T - - - -
+ / dr G(y, 7/x,taly, DdS(y)
-T S

- T - . -
Case B: p(x,t) = / dr / Gly, 7]x,t)v(y, ndy
-T v

T - -
i} ar [ 2S0. 7% o F TydasE
T S cn J

Thus, once the appropriate Green's function has been found, the solution to
the wave equation (1-50) subject to the tinear boundary conditions /1-61) can

\ (1-63)

be expressed in terms of the volume source distribution 7 and the prescribed
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boundary values a by using equation (1-63). When no solid boundaries are
present, this can be accomplished by using equation (1-586).

Since a Green's function is a solution for the sound field emitted from an
impulsive point source located at the point y at the time 7, equation (1-63)
shows that in the general case the acoustic pressure is just the superposition
of the pressures due to the volume sources «,A(§, 7) and the boundary sources
aly, 7.

1.4.2. 2 Calculation of Green's functions. - There are two fairly general
methods for finding Green's functions. These may be referred to as the
method of images and the method of eigenfunctions. We shall first consider
the method of images. ‘

1.4.2.2.1 Method of images: Since the only singularity of the Green's
function G(?, T!;(.,t) occurs at the source point at the time the impulse is ini-

tiated, it must be of the form
67, 7%, t) = G%F, 7|X,t) + h(F, 7|%, 1) (1-64)

where G0 is the free-space Green's function (eq. (1-28)) and h is a solution
of the homogeneous wave equation with no singularities in v. The details of
the method are best illustrated by considering a particular example.

Thus, suppose that the mean flow is zero and let v be the region 79 =0
(shown in fig. 1-10). We shall construct a Green's function whose nermal
derivative vanishes on the solid boundary Yo = 0 of this region. The function
h must be chosen so that this boundary condition is satisfied. Since

GO(Sf',T}i',t)=-—1—5 T-t+ 2

47r o

is a solution to the inhomogeneous wave equation, and sinre thic enuatinn is
invariant under the transformatlon y2 —52, it follows that (1/47r)8(7 - t +
r /cO) with r' [x -y f and §' = 1y1 - ]yz + ky3, is also a solution to this
equation. But because y' is never in v, this function is nonsinguliar in this
region and therefore satisfies ihe conditions imposed on the funcsion A,
Hence,
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Figure 1-10. - Coordinate system for half-space Green's function.

G(;,ﬂit):l.ﬁ Tot+ )+ 1'6 T-t+ (1-65)

4rr o 47r | oy

satisfies the wave equation (1-59) in the region v. It is now easy to verity
that it also satisfies the boundary condition

E_.G_ = O at yz = O

Py2

and is therefore the required Green's function.

1.4.2.2.2 Method of eigenfunctions: We now turn to the metnou oi tiged. -
functions. Suppose that the function b in the boundary conditions (1-62) is in-
dependent of 7. Then it can be seen from equation (1-51) that G depends on
- and t onlv in the combination ~ -+ Hence, upon taking the 7-Fourier

transform of this equation and the boundary conditions (1-62) and introducing
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the function Gw@’f'ﬂ, which is related to the Fourier transicrm f:/"l{j_,":?,t')
of G by

— - i *
G, 7% = 2me!“t 4 (1-66)
. . . 14
we find (after taking complex conjugates) that
2 232 2 2\ e o - =
Ve - MC S - 2iMk ——+ k%G (¥ [0 = -a(x - ¥) (1-67)
ay% ay1
and that
G,
Case A: +bG =0
on for y on S (1-68)
Case B: Gw =0

where as usual k = w/cO and M = U/c0 is the mean-flow Mach number,
Then it follows from equation (1-66) that the time-dependent Green's function
G can be determined from the solution Gw to this boundary-value problem

by

-1 e telt-7 g _F [Ddw (1-69)

27 JSaoo

It is frequently possible to solve the problem posed by equations (1-ATY
and (1-68) by expanding the solutions in terms of appropriate ''eigenfunctions'
of equation (1-68). However, caution must be used in carrying out the inver -
sion integral in equation (1-69) since G = will generally have singularities
along the w-axis. It will then be necesgary_ to deform the contour of integra-
tion around these singularities in a manner dictated by the causality condition
- {1-52).

[t is casy to show that causality condition (1-52) will be satisticd if the =olution to
this cquation represents an outgoing wave at infinity,
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Figure 1-11. - Duct geometry for Green's function.

These ideas are again best illustrated by considering an example. Thus,
suppose the region v is the interior of an infinite, straight, hard-walled duct
(shown in fig. 1-11) whose cross-sectional area is A and whose axis is in the
yl-direction. In order to construct the Green's function Gw which satisfies
the boundary condition"’

aGw -
=0 for vy on S {1-70)
on

it is convenient to first consider the functions ¥ satisfying the two -
dimensional Helmholtz equation

2 2

B_+i—\II+K2\I/=O (1-71)
ayg ayg
in the region A and the boundary condition
¥ -0  on the boundary D of A (1-72)
an
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it can be shown15 that such solutions exist only for a discrete set of real

values, say «, for n=0,1,2,..., of the constant x, called eigenvalues.
The corresponding solutions, ¥, are called eigenfunctions. The eigenfunc-
tions satisfy the orthogonality condition

/ N 0 if m#n ( )
¥ ¥ dy, dy, = 1-73
A M Y273 it m=n
n
where
T z/ lo_ |2 dy, dy (1-74)
n A n 273

We attempt to expand the solution to equation (1-67) in terms of eigen-
functions Yo to obtain

Gw = Zn: fn(yl)‘I’n(YZ,Y3)

Then the boundary condition (1-70) on the surface of the cylinder is automati-
cally satisfied. Substituting this expansion into eguation (1-67), multiplying
the result by \I/;‘n, and integrating over the cross-sectional area A show, in
view of equations (1-72) to (1-74), that the expansion coefficients f = satisfy
the equation

*
i \Ilm(xz,x3)

Tm

2

324° ook 4 w22 s -
5 dy m| m

dy1 1

Hx, - v,)
4 4

where
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But the solution to this equation is

X (x,,Xq) i[Mk(y -x)+k|x, -y f]
. _m7273 exp { L 1 71 mfl 1

% T 2

m
where

(1-75)

And in order to ensure that this solution remains bounded for large values of
)xl - Y1’ for all k and «_, we must choose the branch of the square root in
equation (1-75) so that it is equal to i times the absolute value of the radical
when k2 < szfn. Hence, )

—— ¥ (Yo, Yo 0 X (X, Xq) ilMk(y, - x,) +k_|y, -x

Gw(Y’X)=_1.§ n7273%n "2 s o [ 17 %1 nlv 1] (1-76)

2 kT, 32
n

Finally, substituting this into the inversion formula (1-69) shows that the
Green's function is

. - (Yo, 7o) ¥ " Xy, Xa)
G(y, Tlx,t) =L n 2 -3 n 2 3

47 I“n

o ‘ K
i w(7—1)+3ﬁ(y1-x1)+—n-‘yl—xll
2 2
e i r3
X dew (1-77)

n

=0

The contour of integration in the complex w-plane which ensures that the
causality condition (1-52) is satisfied is shown in figure 1-12.
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Imw

~Path of integration

Lo Re w

N
CoPkn

<)
. cokn
*~Branch cut for square root’

Figure 1-12. - Contour of integration for inversion of Green's function.

In a2 number of important cases16 it is convenient to express the index n
in terms of a doubly infinite set of indices, say m and n. Then the eigen-
values are denoted by Km 1 the eigenfunctions by ¥ ., and equation (1-77)

b b

becomes

- ; T (Yo, 0 (%, %)
G(y,7{x,t)=_1-§ m,n’2’73"m,n'"2’"3
4n

T
mon m,n

- K
i[w('r—t)-:-y_li(yl-xlh n,zm [yl-xlq

2
& 8
€ dw (1-78)

b

For example, in the case of a circular duct of radius R, it is easy to see

by introducing the polar coordinates

¢' = yg+yg

. L6y hen the surface D is a coordinate surface in a coordinate system wiere cqua-
tion (1-71) is separable.
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_1y_3

@ = tan
P

into equation (1-71) that the eigenfunctions ¥ n are given by
H

-im %

A
‘Ilm,n = Jm(Km,nC )e (1-79)
where Jm is the Bessel function of order m and Km n is the nth root of
’ —
Jm(xm,nR) =0 (1-80)
r_ =n|R? m? J2 (. R (1-81)
m,n " - 2 m'Km n
Km, n

and m =0, z1, #2, ...; n=1,2,...

1.5 SOURCE DISTRIBUTION IN FREE SPACE: MULTIPOLE EXPANSION

1.5.1 Interpretation of Solution

The simplest case discussed in section 1.4 occurs when the mean flow is
zero and there are no solid boundaries present. The sound field due to a local -
ized source distribution y is then given by equation (1-56). But inserting the
expression (1-38) for the free-space Green's function into this equation and
carrying out the integration with respect to 7 show that

Y &:t = "I;
- 1 CO -
p(x,t) = — —~_ Ydy (1-82)

4r r
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where as usual
r=|x-7

The integration is over all of space, but only those points where }'(37, 7) is non-
zero contribute to the integral. We, of course, assume that 3 vanishes fast
enough as I;( — o g0 that the integral converges. '

Comparing equation (1-82) with equation (1-36) shows that the volume el-
ement dy emits an elementary wave

')/<§;,t - ’r—>
1 o

47 r

which is exactly the same as that emitted from an acoustic point source of
strength » and that the resultant acoustic pressure field is just the super-
position of these solutions.

Since the time it takes a sound wave to travel a distance r is r/co, the
time t - (r‘,«"/co) which appears in equation (1-82) is just the time at which the
sound wave had to be emitted from the point y in order to reach the observa-
tion point X at the time t. It is called the retarded time.

1.5.2 Multipole Expansion

Expandingl7 the integrand in equation (1-82) in a Taylor series (with re-
spect to the variable T = X - y) about the point T = x while treating the var -
iable v as constant shows that

17 . . . . .
‘The expansion procedure used in this section follows the trecatment of Doak

\ el ).
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3 ;,t-i - j \k 7 . <;‘t—_£_>
o ) Z (rl-xl) <r2-x2) (I‘3~X3) EJ+k+Z gy

4nr jtkri! Erjl E‘rg Pré 4rr L
ik, =0 r=x
) —_ X ’
. ~ly t - 2
_ Kk IR RE
_ okt vy (59) () ( Co)
3 7! A t
axl axl; axé jrkil! 47x
ik, L=
Substituting this into equation (1-82) shows that
o0
_ j+k+ Ikl
p(x,t) = ke CU o (- i) (1-83)
ale Bxg ax?3 4mx Y o
],k,l—O
where
viysyh
m. (t) = - tidy
8L RS2

is called the instantaneous multipole moment and the j Kk, Zth term of the ex-
K+

pansion {1-83) is called a multipole of order 2} Of course, it is as-

sumed that the source distribution vanishes at infinity rupidly enouch to en-
sure convergence,

Since, as shown in section 1.3, 1.7, such term:

LI _ X
4r7x ).kt Ch,
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is a solution to the wave equation and since, as can be easily verified, the
derivative of a solution to the homogeneous wave equation is also a solution,
each term in the multipole expansion (1-83) must be a solution of this equation.

If there exist 3N functions ¥, . . . (v.t) which vanish together
1,19, 15,000y

with their first N derivatives sufficiently fast as y - < such that

2 N
-~ Vi gy
y(y,t) = (1-84)
dy. cJy. 0dy cy.
11 1 13 IN

irigrig, - ,ig=

18

it can be shown™" that

m].’k’l(t)zo for all j+k +7 <N

Thus, the first term in the multipole expansion will be a pole of order 2N
and, aside from-this, only higher order poles will occur in the expansion.
For example, we have seen that an applied force Z results in a source term
in the wave equation of the form

v . Z: ié_l
Eyi
i=1

Hence. the lowest order poles appearing in the multipole expansion of a solu-
tion to this equation will be poles of order 2 called dipoles.

An example of how this asscertion can be proved tor the case where N
civen in section 2. b

=
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1.5.3 Behavior at Large Distances From Source

Since

—a-l:O(x’z) as x =«

. X
axl

and

3 X \_ Xi 9 X
oy I (“) e e (t 'c—)
i 0 0 0

It follows that for large x, equation (1-83) becomes

I\ \T j+k+
p(x,t) ~ X/ AR/ X <L i) m; g g (t - _x.> (1-85)

47X o ot o

ik,2=0

Now suppose that the source distribution y is essentially confined to a
region whose size is of order L. Then the multipole moments are of order

my oy = O ()

where /3% denotes the average value of y over the source region. And if
’I‘p is a typical period of oscillation of the sound source (so that X = COTp is
1 tvpical wavelength of the sound), it follows that the j k. Zth term in equa-
tion (1-85) is of order

j+k+1 j+k+1
1/ L L3 = 1(5_ L3753
X TpCO » X \z\
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Hence, if the source region is very small compared to a typical wave-
length, only the lowest order poles which occur in the multipole expansion
will contribute to the pressure field at large distances from the source. A
source distribution satisfying this condition is said to be compact. Thus, for
a compact source, all the poles which contribute to the sound field at large
distances will be of the same order and this order will be equal to the largest
integer N for which the source distribution ¥ can be expressed in the form
(1-84). For this reason, a source distribution which can be expressed in the
form (1-84) is called a multipole source of order 2N. Clearly, higher order
poles will be much less efficient emitters of sound than lower order poles
whenever the source region is compact. If N =0 (i.e., if ¥ cannot be
expressed as a derivative which vanishes at infinity or on the boundary of the
source region), the source is called a monopole, or a simple source. We
have already indicated that when N = 1 the source is called a dipole source,
and if N = 2 the source is called a quadrupole.

It can be shown that any dipole source can be constructed by bringing to-
gether two equal -strength monopole sources in such a way that the product of
their strength times their distance remains constant. Similarly, any quad-
rupole source can be constructed by bringing together two dipoles, and so on
with higher order sources.

1.6 RADIATION FIELD

Again suppose that the mean flow is zero. An important special case of
equation (1-58) occurs when G is taken to be the free-space Green's function
GO_ Thus, if there are no volume sources presentin v (i.e., + =0 in

), inserting the free-space Green's function into cquation (1-38) shows that

T p(;(.,t) X in v
0: 20
dr G L _p &2 \4s =< (1-8/)
T S cn n LO X outside v

(The formula obtained by substituting equation (1-38) into this formula and

performing the integration with respect to 7 is xnown as Kirchhot{'s theorem. )
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—Dlpo

Figure 1-13. - Interior and exterior regions.

This equation applies to any solution p of the homogeneous stationary -

medium wave equation

v2_. 17 \poo0 (1-87)

within any region v bounded externally or internally {or both) by the surface
S (as shown in fig. 1-13).

Let us apply equation (1-86) to a solution p of equation {1-87) in the re-
vion o exterior to a closed surface S and also to a solution Py of this caui-

tion in the region interior to S. Suppose, in addition, that the solution

14
0
Py takes on the same boundary values on S as does the exterior solution p.

Then for any point x in v

T 0
dr Gof-l_)‘-l)i'-G_- ds - pix.t)
AN S n fn/

T "D 0
ds GO0 G Yas -0
T S ’n M
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We must realize that the direction of the normal in the first formula is oppo-
site to that in the second formula; hence, 2/2n in the first formula is -2/¢n
in the second. Then subtracting these two equations shows that

- T - -
p(%,t) = / d'r/GOa(y, DASH) (1-88)
LT S '

where we have put

- ap -
a(y,—r)sﬂ)____ﬂ for y on S

on  on

Upon inserting equation (1-38) into (1-88) and carrying out the integration
with respect to 7 we obtain

pE,t) =~ [ Lafy,t-X\ds@) (1-89)
47 S by ¢y

Equation (1-89) shows that the pressure at any point X of an exterior region
v (which is devoid of any volume sources) is just the sum of the pressure
fields resulting from a distribution of simple sources over its bounding sur -
face S.

Now consider that case where all the sources producing the sound field
and all solid boundaries which reflect or interact with the sound are confined
to a finite region of space, and let S be an imaginary surface enclosing these
sources and reflecting surfaces as shown in figure 1-14. Then equation (1-89)
describes the sound pressure in the region exterior to S.

For a source-free region with zero mean flow the first equation 1-13Y,
expressed in terms of the variables X and t, becomes

-

Py o= VP
]
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x|

—Sources, reflecting surfaces, etc.

Figure 1-14. - Emission from bounded source
region,

But inserting equation (1-89) into this equation shows that

¢ TP r c cn @ c
0 g T 0 0 0

Hence, there exists a function h(y, 7 such that

aF, 1 = 2. D
T
7.1 x lh<;,t -_*‘_>+ 1 5*‘( t-—> ds(y) (1-90)
4mp 2|r c ot c
0Jg T o/ ‘o 0
and
p= L f LT o Eldasy (1-91)
4r r ct o
S

If T is a typical period of oscillation of the sound source and hence if

= coTp is a typical wavelength of the sound, the ratio o£ the first to second
terms in the integrand in equation (1-90) is of the order X/r. Thus, suppose
that the observation point is many wavelengths distant from the surface S

that is, r->> X (for any point y on S). Then the first term in equation (1-90)
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can be neglected compared with the second to obtain

T~_1 Liﬂ(gf‘,t - L)ds@’) (1-92)
47rp0c0 g L2 ct <

Now suppose that JQ} is much larger than the largest dimension of S.

Then for ¥ on S

SEE—— - = =2 -~ = =2
r:‘/xz_z}(‘L,Lgygzzx‘/_zx-y“yl :X_x.y+o<fﬂ>

Upon inserting this result into equations (1-91) and (1-92) we find that

- ) h<;,t o x K. >_'>ds<;>
dnx ot c X ¢
S 0 0
UK, t) ~ —1— fp(x, t) (1-93)
PoCo

where n = —{*( is the unit vector in the x-direction. The intexral depends on

the magnitude x of the vector X only in the combination t - (x/co) and other-
wise depends only on its orientation. The latter quantity can be characterized

by the two polar coordinates ¢ and « shown in figure 1-15. Thus, the time

derivative of the integral in the first equation (1-93) depends only on the var -

iables t - (x "co), ¢, and ¢ and therefore

- ; \
px,t) ~ — ¢t - X 6,0 (1-94)
4rx c0

The radiation field. or far field. is defined to be that region nf space

which is far enough awav from the sources and reflecting object, in terms of

both the wavelength and the size of ihe source region, for the pressurc and
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>

X2

Figure 1-15. - Polar coordinates of observation point.

velocity to have the behavior given by equations (1-93) and {1-94). Ideally, a
source system can have a radiation field only when it is embedded in a uniform
medium of infinite extent. In practice, especially in aeronautical applications,
there is usually a region at some distance from the source system into which
no appreciable scattered sound comes from reflecting objects lying even fur-
ther from the source system and hence in which radiation field behavior is ap-
proximately achieved.

Equation (1-93) shows that the velocity u= ﬁur is purely radial, and its
magnitude u. is related to the pressure by

u, = P (1-95)
PoCo

The ratio pycy between the pressuce and veiocity in the radlatioa ot s
called the characteristic acoustic impedance of the medium. It is equal to 429

: : o}
newton-seconds per cubic meter for air at 0° C and l-atmosphere pressure.
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1.7 ENERGY RELATIONS

1.7.1 Basic Definitions

In this section we shall define acoustic energy density E and an acoustic
energy flux vector 1 for any flow governed by the linearized gas-dynamic
equations (1-11). Perhaps the most obvious procedure which comes to mind
when attempting to introduce a suitable definition of these quantities is to sim-
ply neglect higher order terms in the expressions for the ordinary energy den-
sity and energy flux vectors of an inviscid fluid. However, this approach in-
troduces certain difficulties. Thus, when the energy density and energy flux
associated with the mean background flow are separated out, the remaining
terms are of second order. 19 But some of these terms are not simply prod-
ucts of two first-order terms and can therefore not be calculated from the so-
lution to the linear gas-dynamic equations (1-11). Inorder to obtain a useful
definition of E and —f, we must require that they can be calculated entirely
from solutions to equations (1-11).

If v is any volume which is free from external sources and enclosed by
a surface S, the net flux of acoustic energy through S must certainly equal
the time rate of change of energy within v. Thus,

.4 [JE4q5- [T nas
dr /. a

But since this must hold for an arbitrary volume y, it follows from the diver-
gence theorem that E and I must satisfy the conservation law or energy

equation

B rhe process used in the derivation ol the acroustic cquations can be thoagat ol
as the first step in obtaining an asymptotic cxpa'nsion of the flow variables in powers of
the (small) amplitude ¢ of the acoustic distu rhbance.  Since the variables which satisfy
the acoustic equations arc of the same order as this amplitude, they canbe te rmedd
(irst—order quantitics.  The next emallest terms in the cxpansion will he of the arder
of the amplitude syuarced and can be called second-orvder terms,  Clearly, the product
ol two lirst-order terms is also a sccond-ovder term,
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ELiv.T1=0 (1-96)

in any source-free region.

It was shown by Mohring (ref. 4) that it is possible to define an E and 1
entirely in terms of first-order quantities which satisfy the conservation law
{1-96) by using the Clebsch potentials 7, ¢, @, and 3 introduced in appen-

dix B by the relations20
Dn. e (1-97)
Dt
V=Vg+SYn+ avy , (1-98)

where © is the absolute temperature and

1

2_ _;6_ +V-V
Dr o7
is the derivative following the motion of a fluid particle. It is also shown in

this appendix that these potentials can always be chosen (provided the external
force is conservative) to satisfy the equations

~
..D_qu V2 +06S -H
Dt
Da_, 5 (1-99)
DTt
D3 _
Dt Y,

20 . . L ;
The development given by Mohring is followed fairly closely in this scetion,
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H=h+1vl:0=-29.5T_q

cT cT d

N
]

ot}

1-100)

~)

DH _127p , 30 (1-101)

Dr peéT 27
=H -K -8K -oK 1-102
* ¢ 7 B (1-102)

where h is the specific enthalpy, Q is defined by
é: - vQ
p

and K | K
Now consider a flow governed by the linearized gas -dynamic equa-

b b

and KB are constants. .

tions (1-11). Corresponding to this linearization the Clebsch potentials can
be written as

- '

n=now>-KnT+n

o= g -K 7+ ¢
= ao(gf.) +

B =By ~KyT+ s

where the primes denote a small fluctuating part (whose squares can be neg-
lected). Upon inserting these results into equations (1-97) to (1-102) the
zeroth-order equations become

217he zeroth-order time-dependent terms give maximal generality while still
leuving the ceroth-order ohysical variables such as Yo Po and p, indenendent of
time. ’
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<1

VO = V(po + SOTT]O + CVOV;SO

—

.2
'V¢O°VO+@OSO+K(‘O-H

Yo 0
vO- Vozozo
VO- VBO:Kd
# =H,-K -SK -aK,=h +1v2,0 -K -SK -q
0 0 ) 0y 03 0 9 0" "0 @ 0 n 0
and the first-order equations become
u = Vo' + S'Vno + SOVT]' + aOV;B' + a'V,EO
_Q_+-Vb’v’n'+ E-Vrh): -0’ W
T
8(‘9'4.\7 V([)'J-LT-V(D :;.G_O’_O"
:r 0 ‘ 0 0 >
N
o' = t = N
- +xO-V 15 +u-V<n)—0
83 L5 e 3P+ 4V 3L =0
- 0 ! "0 J
cT
where
g =h-08S
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- . 1 ' 1

S en sa- 7.0 -SK -aK,=-29 s, T o0 Z 1-10m)
0 n r &7 07 0z
' 1 At
X + 7y 0 - Llop (1-108)
a7 pg o7 aT

Before using these potentials to derive an energy equation, we shall first
prove that the following two identities hold:

nat ' ' [ - - ‘ v
vy - <ﬁ.vn'+aiv3' -9"_vs'-.aiwy'>=_u- <0_“_+ vf‘>-@ S (1-109)

oT oT cT 0T aT T
2 12
, cnhp 20 ,
p o e 21|07 _,f 0) s (1-110)
pg °T ot o7 Py ¢S

-

If the third equation (1-11) and equations (1-105) are used to eliminate Vo on
the left side of equation (1-109), we obtain

- (o' 2g' 2s' 2o’ o, v as'
v - |9 wgs, + & vy, -y, - V3, -0 —
(87 0" %7 0 57 0 - 0 eT

But equations (1-104) and (1-107) show that this expression is equal to the
richt side of equation (1-109).

Since

Fpo S &S
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and

S :
0 ! 0} g

p +\—=

)
0 No

Py S,

equation (1-110) is a consequence of equation (1-5) and the Maxwell relation
(see, e.g., ref. 5, ch. XIX) '

P@O 1 9p0
Po/sy, pg \ 20/pg
It can now be shown that the intensity
T - oyt A"\ -
I:f'(p06+ p'vg) - pg (s' SP”_T+ a' %‘i—>v0 (1-111)

satisfies a conservation equation. Thus, it follows from the second equation
r1-11) and equation (1-108) that
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v.-l=0¢'V- (pou + p'vo) + (pOu + p'vo) v i

- t ' ' \ t
-PgV0 SV, a'v3 .3 s +_a-B—Va'>
oT oT o7 oT

1 ' ] ] t
=f'poq-3f"i9—+p0u-v f'+&.a£.-p'£+@_>
eT pg 07 ar ar

a - t t t '
-—[pava (SVn +aVB)]
87[00
oT T oT oT

1 1 1 ?
oy (o 2 o 2 o)

Hence, upon using equations (1-109) and (1-110), we obtain the conservation
equation

V--I.+-8—E-=pojq (1-112)
oT

2 N ;
- 1 2 2 T el e tonty , 1 20 12
E=p +-2—p0u -g-p—co-t-povo-\s vn +a\7/3)+—p0< ) S (1-113)
0 p
0

2 3Sq

Thus, with the acoustic energy flux defined by equation {1-111) and the acous-
tic energy defined by equation (1-113), the conservation law (1-96) holds in
any source-free region. The energy flux vector 1 is called the acoustic
intensity. These definitions, however, are certainly not unique for. if A is
any vector formed from the Clebsch potentials and the physical variables,
E-V.A and 1+ aK/a-r will also satisfy the energy equation (1-112).
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1.7.2 Time-Averaged Intensity and Power

Taking the time average over the time interval T2 - T1 of the energy
equation (1-112) shows that

E(Tz) - E(T)

—:'V'I“’Po.?f'q

T, - T

2 1

If the flow is periodic or stationary and if T2 - T1 is taken to be the period
in the first case and equal to infinity in the second case, the left side of this
equation will vanish. Hence, for any region which is free from acoustic

sources
v-1=0 (1-114)

and this implies that

41
=
Qu
w

1

[o)

(1-115)

/

for any surface S enclosing a source-free region.
The acoustic power crossing a surface S (closed or opened: iz defined as

Hence, if S1 and S2 are any two surfaces enclosing a source-iree region,
equation (1-115) shows that the total acoustic power crossing Sl is equal to
that crossing SZ' It is this property. which is clearly a direct consequence
ol the solenoidal property (1-115) of the aooustic intonsity, from wiien th
concepts of acoustic power and mean acoustic intensity derive their utility.
One slight inconvenience associated with the definition (1-111) for the
acoustic intensity is that it does not determine this quantity in terms of the
basic flow variables p., h', g, and so [orth, hut requires the use of the
Clebsch potentials. Moreover, these potentials must be found by sslving
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additional equations (although these equations are readilv solved whenever the
governing acoustic equations can be solved). We shall see in the next section,
however, that in certain important.cases the Clebsch potentials do not occur

in the expressions for 1 and E.

1.7.3 lIsentropic Flows

1.7.3.1 Interpretation of energy. - The case which is perhaps of most
interest is when the entropy is constant so that S = SO =S' = 0. Equation (1-
B6) then shows that

PP’ ,
dp = P, Second -order terms
Po

T |-

Po

Hence, it follows from equations (1-14) and (1-107) that equations (1-111) and
(1-113) become, respectively,

-~ (p = = N,o= e T =
I-<;—+u VO+Q>(pOu+pVO)-oz ?:-pOVO%-KJ(pOu*p\O)iI (1-116)
O i

2 poU - - o
P + 0 ' '

E = +pu- vy +pQ + a{V .;)0?0 -K,)p') 11-117)

2
2pAC
Po~0
In order to interpret the first term in equation {1-117}). notice that lor a
constant-entropy process the work done per unit mass by the acoustic pres-

sure p' against the surroundings is

[ v "2

1__ p dp __ p2 + Third-order terms
2.2 2

P pTch 2p0C0
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Hence, the work done per unit volume by this pressure is

12
__b + Third-order terms

2
Zpoco

We can, therefore, interpret the first term, p'2/2p00(2), in E as the potential
energy per unit volume associated with the acoustic field.

The kinetic energy per unit volume is one-half the absolute value of the
momentum density squared divided by the density. The momentum density in
the acoustic wave is

ov - Vo = Pu + PV + Second-order terms

Hence, the kinetic energy per unit volume is

- — 2 9
’Pou +p Vo’ P4 - = .
= +pu- v0 + Third-order terms
2p . 2

The second term in equation (1-117) can therefore be interpreted as the kinetic
energy per unit volume in the wave. The third term is clearly the potential
energy per unit volume associated with the external forces.

In order to interpret the last term in equation (1-117), it is convenient to
introduce the vorticity vector, @ =Vxv, Itisa measure of the average
angular velocity of the flow. Taking the curl of equation (1-98) shows that

-—

w=Vxy=VSXVn+ Vax V3
The first term in this equation accounts for the vorticity introduced bv entropv
gradients, while the second term represents the vorticity introduced external
to the flow. A flow with zero vorticity is said to be irrotational. In such
flows the entropy must be constant. If the curl of a vector is zero, it can be
expressed as the cradient of a scalar. Thus, in the case of an isentrapie ir-

rotational flow, no generality is lost if we assume that the scalar potential for
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the velocity is ¢ (see eq. (1-98)) and that « and . are zero. The last
term in equation (1-116) is then a measure of additional energy in the wave
associated with the angular momentum of the flow.

1.7.3.2 Irrotational flows. - For irrotational flows, equations (1-116)

and (1-117) therefore reduce to

1=<p_+a. €O+Q'>(pou+p'v0) (1-118)
Po
2
12 p u
E-_P p + 0 +p'ﬁ' . VO +p'0' (1-119)
2
2pp%

These relations were first obtained for isentropic irrotational flows by
Chernov (ref. 6). However, Blokhintzev (ref. 1) had previously shown that
the definition (1-118) for the acoustic energy flux leads to a proper energy
equation for the case where the wavelength of the sound is very short com-
pared with the scale on which the mean velocity changes. 22.

For regions of the fluid where the mean velocity ;0 and the potential o'
are negligible, equations (1-118) and (1-119) reduce to the definitions of 1

and E used in classical acoustics

T1-p'Q {1-120)
2
v2 p u
E = + 9 (1-121)
5 2 2
ZpOCO

1.7.3. 2. 1 Relations for radiation field: One important region where it is
usually possible to assume that ;b =07 =0 and therelore thui wcructions -
120) and (1-121) hold is the radiation field. In this region the velocity is re-
lated to the pressure by equation (1-93). Hence, it follows from equation (1-

120) that the intensity is in the radial direction n and is given bv

22

Which is the case treated in seetion 1. 3. 3.
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—
1"
=33
—

where

2
1=-P (1-122)

PoCo

Taking the appropriate time average of equation (1-122) shows that

_ 2
1--P (1-123)
PoCo

Thus, in the radiation field the mean acoustic intensity is proportional to the
mean square acoustic pressure. Now most microphones in most cases meas-
ure root-mean-square (rms) sound pressure, and the rms fluctuating pres-
sure at the ear is believed to be most closely related to the sensation of loud-
ness. Since equation (1-123) only holds under special circumstances, the
acoustic intensity does not always provide a measure of the signal which would
be sensed by the ear or a microphone.

An ear, and usually a microphone, is basically a diaphragm encased in a
reflecting object (head or microphone housing). If the microphone housing is
not small compared with the wavelength, the pressure it senses is not the
same as would exist if the microphone were not present. This difference 's
the result of the pressure increase caused by the sound radiated from the
housing.

Equations (1-94) and (1-123) show that

T=————L———g2Q--5,&c>
162ﬁ2x2p0c0 o

But it is shown in appendix 1. A that the time average is independent of trans-

lations in time for any periodic or time-stationary process. Hence,
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I= —1——g2(t,9, )

2 2
167 PoCoX
Thus, the average intensity in the radiation field is proportional to x'2.
If the sound field is periodic so that

it follows from equation (1-123) and equation (1-A7) that

7.1 ﬁf !Pnfz

P00 n=-co

This equation shows that we can interpret the quantity

o, )2

1 =
n
)

as the average acoustic energy flux being carried by the nth harmonic. It
can therefore be called the intensity spectrum. It follows from equation
(1-A6) that it is related to the normalized pressure autocorrelation function
T'(7) by

r(n =pMpt+ 7 _ z: ifdw“T (1-124)
P00 n=-co

If the sound field is time stationary, it follows from equation (1-123) and

equation (1-A22) that
o0
1-_1 S, ()
11
Poto Lo
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where Sn(w) is the Fourier transform of the pressure Eutocorrela‘;ion func -
tion p(t)p(t + 7). Hence, we can interpret the quantity Iw = Sll(w)/po o s
the average acoustic energy flux per unit frequency and it can therefore be
called the intensity spectrum. It follows from equation (1-A21) that it is re-
lated to the normalized pressure autocorrelation function I'(7) by

(s = Rtpt+ D :/ Ywe'i‘”dw (1-125)
PoCo -

These relations have only been shown to hold in the radiation field and do not,
in general, hold at points near the source region.

1.7.3.2.2 Unidirectional transversely sheared mean flow: When the
mean flow is given by equation (1-12), we can take

KTI = 00 K(p = —6080 + h0

oy
By =

1 1
—_— T} :0 90 =_Uy
U 0 0 1

2

and equations (1-103) will be automatically satisfied. When these relations
are substituted into equations (1-105) (with v0 = 1U) we obtain a set of first-
order equations in the variables 7 and Yy which can easily be solved for the
perturbation potentials. However, these solutions are best left to specific
cases. A solution is carried out for a duct flow in reference 4.

1.8 MOVING SOUND SOURCES

The sound emission from any real moving source is generally complicated
by such effects as the interaction of the sound field with the {usually turbulent)
flow about the body or even a back reaction of the flow on the sound source.
However, in order to illustrate the essential features of the process, we shall
consider the sound emitted from an ideal point source where no such flow re-
actions are present. We shall also limit the discussion to the case where the
source is moving uniformly (no acceleration). As will be shown in chapter 2
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the acceleration of the source can result in sound emission even if the source
has no oscillations of its own.

1.8.1 Solution to Equations

Consider a source moving with a constant velocity ﬁo through an infinite
medium otherwise at rest. The volume source density is then given by

Q(S;, T) = qO(T) 6(; = v0 T)

Such a source could result, for example, from the heating and subsequent ex-
pansion caused by a modulated beam of radiation focused on a point moving
through the fluid.

The wave equation (1-18) for the sound pressure now becomes

2 - -
v?p - LB o) L {ag(ne(y - Vo)
02 3 2 aT
0 T

It is convenient to introduce a velocity potential ¢ by

p=3¥ (1-126)
aT
so that
2, 123% - =
vy - —2——= -poqo(ﬂé(y -VO'r)
Cq 872

Upon comparing this with equation (1-59), we find that equations (1-38) and
{1-56) show its solution to be
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In order to evaluate the int
functions f and

g of 7

(1-127)

egral, we use the identitv (which holds for any

i e
where 7; is the ith root of
g(r)=0 (1-129)
Then upon putting
X - V.7
o o= 0 . +-t
0
it follows that
2. 5 .z
dae Yo7 Vo ¥
25 - ——— +1
dr COJ. -V~
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and therefore that equation (1-127) can be written as

- ag (72)
U(x,t) = 2 O\e (1-130)
4r 2.1 5 0z
VO le - VO ’_. — ~1‘
+ X - V i |
‘ 0'el
o
i
. .th .
where T 18 the i solution of
X -V, 7|
— 0 Lo -t=0 (1-131)
o
This equation, being quadratic in e will, in general, have two roots which
we shall denote by 7=. There will then be two terms in the solution given by

e
equation (1-130), which we shall denote by wi. Hence, if we introduce the

source Mach number

- "\?0
MO = (1-132)
c
0
and the vector
ot o o &
R —X-VOAe (1-133)
the two terms which appear in equation (1-130) can be written as
: +
- Paln
v b = L 0 O( e> (1-134)
47

R*[1 -MO cos (¥
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where
r'\‘/l ot
cos 9*5—0- R— (1-135)
M0 R*

is the cosine of the angle between the vectors R* and mn. And equation
(1-131), which determines the retarded time, can be written as

+
Aot R (1-136)

e
o

1.8.2 Interpretation of Solution

Equation (1-133) shows that R is simply the vector between the observa-
tion point X and the position of the source at the time e (see fig. 1-16).
But equation (1-136) shows that the length R of this vector is exactly equal to
the distance co(t - 7,) which the sound wave, arriving at X at the time t,
has traveled in the time interval t - Te- The sound wave emitted by the
source at time Ta will therefore just reach the observer at X at the time t.
Hence, R is the distance between the observation point and the source point at
the time of emission of the sound wave, and Te is the time at which the sound

wave arriving at X at the time t was emitted (or the retarded time),

|ﬁ| : Coﬂ - Tel

o

VoTe

Vo

Figure 1-16. - Orientaticn of source and observer.
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Inserting equation {1-136) into equation (1-133) and squaring the resuitt

gives
= 5,2 = 2
X - Vot - \'
-_!___0_-2.9. (X - Vbt - 7g) + (1 - = (t—Te>2=O
2 2 2
CO CO C0

This equation can be solved to obtain

Rizcoﬁ-'i

)zmo- & -V = YMg - & -Tg]2+ (1 - M) - Tt

1- M3

. (1-137)

If MO is less than 1 (i. e., subsonic source motion), the radical will al-
ways be larger than the first term in the numerator. But since R must be
positive, only the plus sign in equation (1-137) can hold. Thus, for subsonic
source motion, there can only be one source location from which the sound
arriving at x at time t can be emitted.

When the source motion is supersonic, both positive and negative roots
can occur. But then the radical will be imaginary (i.e., no solutions for R

will exist) unless

2
Mg -1
a = cos'1 0 = sin'1 1 <
MO M0 2
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and putting

E:l 4
[aw] (=]
Y
]
«

§=cos & —m———0
fx-Vt!

(as shown in fig. 1-17) we see that this condition requires that the observation
point lie within a cone having its vertex at the source and a semivertex angle
equal to the Mach angle. It is cailed the Méch cone. Thus, if the observation
point is outside the Mach cone, no solutions will exist. In order to interpret
these results, consider the circles shown in figures 1-18 and 1-19. They cor-
respond to the surfaces which ''contain’' the sound emitted by the source at
certain fixed instants of time, say t =0, tl, t2, and so forth.

Figure 1-18 is drawn for the case where source speed is less than the
speed of sound. It shows that only one of these surfaces can pass through any
given observation point O. The sound on the surface passing through the
point O in the E.igure was emitted by the source at the time t = t2 when it
was located at x = Vstz. )

Observation
point ~..

-5 7
WE-cft
gt |
| b o
- 1 / j‘/ A - Source location

attime t

Figure 1-17. - Orientation of observation point relative to Mach cene.
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X Source position at time of
emission of wave front

Observation
peint O

Sound emitted
at t- tl .

Figure 1-18. - Subsonic source motion (at time t). Source Mach
number, Mg, 2/3.

Notice that the surfaces are closer together in the forward direction (and
farther apart in the backward direction) than they would be if the source were
stationary. Thus, mcre of these surfaces will pass an observer in front of
the source in a fixed interval of time than if the observer were behind the
source. Since the total amount of energy emitted by the source in this time
interval is carried hetween the first and last surfaces enclosing this interval.
we anticipate that the intensity of the sound (energy flow per unit time) re-
ceived by an observer in front of the source will be larger than the intensity
received at a point behind the source.

When the source is moving faster than the speed of sound (i.e., super-
sonic source motion), the situation is quite different. In this case the source
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X Source position at time of
emission of wave front

-~ Mach cone

"~ Sound emitted
at t- t3

- Sound emitted
at t - tz

Observation

i point O

— Sound emitted at t = 4

“Sound emitted at t = 0

Figure 1-19. - Supersonic source motion (at time t).

overtakes the sound it emits, and the surfaces ''containing'' the sound take on
the configuration shown in figure 1-19. They are now all tangent to the Mach
cone and there will be at any time t two such surfaces passing any fixed ob-
servation point O located within the Mach cone. The sound reaching these
surfaces will have been emitted in the past by the source when it was at two
different positions. (In this figure the sound was emitted at the times t1 and
ty when the source was at the positions 'i; = Votl and 3'(; = Votz, respec-
tively.) An observer located outside the Mach cone will hear no sound at the
time t. Thus, an observer located at a fixed point will hear no sound until
the Mach cone passes. After that he will hear, at any instant of time, sound
coming from two different points. When the Mach cone passes the observer,
the sound field will be particularly intense since all the surfaces coalesce
along this line.

1.8.3 Explicit Expression for Pressure Field

In order to cbtain an explicit expression for the pressure [luctuations,
notice that equations (1-131) to (1-136) show
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N

2\ L+ PR
O)R (1-138)

-Ri(l - MO cos c‘ai) = (x - Vot) . SIO - (1 -M

Differentiating this equation and using equation (1-137) therefore shows that

MO(M0 - COS 9*)

14 R*(1 - M, cos 9*) = (1-139)
c, dt 1 -M, cos g*
0 0
and hence that
+ M, cos ai
1dR™__ "0 . (1-140)
g dt 1- M0 cos 6
Thus, equation (1-134) can be inserted into equation (1-126) to obtain
' + £\ ]
q t - B (cos p¥ - M )V q ¢ - R
0 0'"0%0
+_ ot 0 o
pT= == +p + (1'14 1)
ot 47:Ri(1 - MO cos 9*)2 4TrRﬂ=2(1 - M, cos 9i>3

where

dq . +
(_9> qo< ] R_>
dt t=t-(R¥/c,) )

For supersonic source motion, equation (1-141) becomes singular whenever

- 2
the angle oF equals cos 1 (I/MO). It can be shown“3
when the observer is on the Mach cone.

that this occurs only

If the source motion is subsonic, the first term in equation (1-141 -il!
always dominate at large distances from the source. The equation then re-
sembles the solution for a stationary point source. The principal difference

23By substituting equation (1-137) into equation (1-138) and rcecalling that :hi ob-

server is on the Mach cone only when the radical in equation (1-137) vanishes.
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is the convection factor (1 - MO cos 5i)'2, which appears in equation (1-141)
and causes the pressure to be higher in the forward direction and lower in the
backward direction.

1.8.4 Simple Harmonic Source

For a simple harmonic source, qo(t) = Ae'iwt and equation (1-141)
becomes

Mg(cos 6 - M) | -teft-(R*/c)]

E£0ACAA
* 070 i AL (1-142)
R (1 - M0 cos @ )

p- = -ik +
+ 2
47R™(1 - M0 cos 9i>

This formula is clearly nonperiodic since 6% and R* depend on the time.
However, if the observer is far enough away from both the source and the
Mach cone, these terms will only change by small amounts during a period
and can therefore be treated as constants. Hence, the pressure will be ap-
proximately periodic with slowly changing amplitude and phase. In this case
it still makes sense to talk about the frequency of the sound field.

In order to show this, we expand R¥ and R%E= Ri(l - M0 cos 9*) in
Taylor series about some fixed time t0 to obtain

2+
dR¥(t.) d“R*(t,)
RE@t) = R¥(t,) + O bty L O o).
0 0 \ 0
dt 2 2
0 dt
. . . dRi(ty) |
RI(b) = Ry(ty) + (t-tgh+ .-
dt,
Then substituting the relation
_l_dzRi ) Mg sin2 9i
cg at? Rf(l - M, cos ef)3

&0
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meelher with cquations 11-139) and (1-140) into these expansions snows that

R W R’(to) t - tO
-t _ - —
CO ‘9 1 - MO cos f;(*)
2 .2 x
e 1 MO sin” f, co(t —to) .
2 A2 RE(t,)
(1 - MO cos 90) 0

MO(MO - coSs 63)

£y _pt
RI(t) = Ry(ty) {1+ cylt -t

0) ...
+ +\2
R¥(to) (1 - Mg cos o)
where we have put (% = gt(to). But since t - t0 will change by the amount
7./w during one period, the second terms in the square brackets will be neg-

licible during this time interval whenever

2
21c M
R*(to) >> 0 0 >
W +
(1 - M0 cos 90>

Thus, when the observer is many wavelengths distant from the source position
at the time of emission (and not too close to the Mach cone if the source veloc -

itv is supersonic), equation (1-142) becomes approximately

PN
ot R¥(t,) Mg cos £5 \l
iwpyA exp (- —————)expqiw .. -

+ t0 -
1 - MO cos @0 CO 1 - MO cos 0 )

2

+
47R (to)(l - M, cos 93}
(1-143)

- which shows that the pressure is approximately periodic. However, its fre-

quency is equul to
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' @
w

T I
1- MO cos 90

and not the frequency w« of the source. This is the well-known Doppler shift
in frequency. As 95 varies from 0 to 7, the frequency «' varies from
w/(1 - MO) to w/(1 + MO). Hence, the frequency is increased when the source
is moving toward the observer at the time of emission and reduced when it
moves away from the observer.

For subsonic motion, only the plus sign can hold in equation {(1-143). As
the source approaches the observer the frequency will appear higher than the
source frequency. It will then progressively deepen in pitch as the source
moves past the observer,

When the source velocity is supersonic, the observer will hear the sound
only after the source has passed him. In this case, there are two locations of
the source from which the sound reaching the observer at any instant of time
is emitted. At the location corresponding to the plus sign in equation (1-143)
the source is moving away from the observer at the time of emission, while at
the location corresponding to the minus sign it is moving toward the observer
at the time of emission. An interesting feature of the supersonic source
velocity is that the sound fields from the two different emission points which
arrive simultaneously at a given observation point can have different phases

and therefore interfere with one another.

1.8.5 Multipole Sources

The results obtained in this section can be extended to multipole sources,
Thus, by putting

in the équation

82



REVIEW OF ACOUSTICS OF MOVING MEDIA

. R Mil’iz’“”iN(T)é(y —VOT)

1
2 oT o5 Yy se ey OV
o R M
for the sound pressure from a point multipole source of order N and strength
Mi i i in uniform motion, we see from the results obtained for a
1072 N
monopole source in section 1. 8.1 that
M. . . (T
1 3 11’12""’1N( e) (1-144)
4r 9%y 0K ..., X R*[1'- M, cos o* |
1 2 N
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APPENDIX 1.A
FOURIER REPRESENTATION OF FUNCTIONS
1.A.1 Periodic Functions

Any sufficiently smo.oth periodic function of time f(t) with period Tp can
be represented as a superposition of simple harmonic functions by the Fourier

series
o0
W= Y, C e inet (1-A1)
N=-=o0
where w = 27r/Tp is called the fundamental angular frequency, f = w/2m is

the fundamental frequency, and the terms withn # 0 are called harmonics.
Each Fourier coefficient Crl is determined by

T,
c, - 1 / gyt gt " (1-A2)
T, %

The absolute value of this coefficient |C_| is called the amplitude of the nth

harmonic, and the argument of Cn is called its phase. Sometimes Cn itself

th

is called the (complex) amplitude of the n"" harmonic. When the function

f(t) is real, the Fourier coefficients satisfy the relation

C_ =C. for n=12.3,. .. (1-A2)
Motion which can be represented by such a series is the basis of all mu-
sical sound. In particular, the vibrations of wind and string instruments can
be approximately represented in this way, and the ''tone quality'' of the sounds
produced is determined to a great extent by the relative amplitudes of the var-
ious harmonics present. Thus, representing a periodic function bv a Fourier

series is more than just a means of representine complex functions in terms
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of simpler functions. It somehow corresponds to the way we hear and distin-
guish sounds.
The periodic cross-correlation function

i (t)f =L / £ (Ot (t + Dt (1-A4)
T, /0

of any two periodic functions

-inwt
fl(t) = n;w Ane
]
-inwt
fq(t) = B e lR¥
2( nzoo n
satisfies the relation
——————————————— w .
F(Ofts = ), AFB e N (1-a5)
n=-o©

which shows that A B is the Fourier coefficient of the cross-correlation
function. Hence, in partlcular the autocorrelation function f (t)f t+ 7
satisfies the relation

P

£} ®f(t+ 7 = Y A [ZeineT (1-A6)

N==xC

and the mean square value ]fl(t) [2 of fl(t) satisfies the relation

0

I, (0|2 = Y Al (1-a7)
n= -
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The cross-correlation is independent of translations in time, which means
that

fI(t syt + by + 7) = £ Oyt + 7 (1-A8)

for any tO'

1.A.2 Aperiodic Functions Which Vanish at Infinity

Of course, periodic sounds represent an idealization since they must be
defined so that their form repeats continuously throughout all time while all
real sounds must certainly be of finite duration. A periodic sound could, of
course, be represented by a periodic function which is equal to the sound with-
in the interval where it is nonzero, but it would not represent the sound out-
side this interval. However, it can be shown that any sufficiently smooth func-
tion f(t) which vanishes sufficiently rapidly at t = +~ can be represented by
the Fourier integral

f(t):/ F(w)e Tt qu (1-A9)

where the Fourier transform F(w) of {(t) is determined by

F(w)=2_l-/ ftyel @t at (1-A10)
T J-oo

The integral shows that any function which vanishes sufficiently rapidly at in-
finity can be represented as the superposition of harmonic functions of all pos-
sible frequencies «,”27.

The quantity [F(w) [2 is called the spectral density of f(t) at the fre-
quency w/2r. For small Aw, an electronic filter which cuts out all fre-
quencies except those between w/27 and (w + Aw)/(27) would deliver a meas-
arabie power proportional to [F(w) 2 times Aw/27, the width of the fre-
quency band passed by the filter.
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A sufficient condition for the Fourier transform of a function i{t) {o exist
is that it be a square integrable function. This means that

/ £t |2 dt < w0 (1-A11)

The cross-correlation function

fI GINCEIE A f’l‘(t)f2(t+ 7dt (1-A12)

of any two square integrable functions

() = A F,(we ! do

() = A‘ Fz(w)e'iwt dw

exists and satisfies the relation
- o i
f*l‘ Dyt + D = / F] (w)Fz(w)e“de (1-A13)
. o}

which shows that the cross-power spectrum FI(w)Fz(w) is the Fourier trans-
form of the cross-correlation function. Hence, the power spectrum [Fl(w) ‘2
is the Fourier transform of the autocorrelation function fI(t)fl(t + 7). Some
useful properties of the Fourier transforim are listed in table 1-1.

It is also convenient to consider Fourier transforms with respect to spa-
tial variables. In this case, however, the previous results need to be ex-
tended to three dimensions. Thus, equation (1-A9) can be generalized to show
that the function £(y) can be represented by the Fourier integrai
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TABLE 1-1. - SOME PROPERTIES OF

FOURIER TRANSFORMS

Function, Fourier transform,
f(t) F(w)
n
d_f(t) (-iw)n F(w)
at”
£t b) Ja fe'iabw F(aw)
a
8(t) 1
2n
o
/ f(t)g(T - tidt F(w)G(w)
o0

£(y) :/F(R’)eii'?dl? (1-A14)

where the integration is now carried out over the three -dimensional (kl,kz,k3)
space and the Fourier transform F(l?) of f(ir.) is determined by

f) = 1 /f(?)e‘ik’yo&' (1-A15)

3
2r)

Notice that we have reversed the sign convention from that used for the
Fourier transforms with respect to time.

1.A.3 Aperiodic Stationary Functions

We shall frequently have to deal with functions which are not periodic and
do not possess a Fourier transform. Rather than satisfy the condition (1-A11)
(which would ensure the existence of the Fourier transform), these functions,

called stationary functions, merely satisfy the requirement that the average
24
value

2J‘According to this definition, oeriodic functions are always stationary,
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- T
2 _ lim 1 2
f(ty|¢ = lim 1 / f(t) |© dt (1-A16)
] T=w o1 JotT 1]

remain finite,
For such functions the Fourier transform lim F(w,T) where

T—~co

1 T it
F(w,T) =L f(tel®t at (1-A17)
27 J-T

will not, in general, exist. However, for any two such functions fl(t) and
fz(t) the cross-power spectral density function

FI (w, T)Fy(w, T)

= lim -
Slz(w) = e = (1-A18)
where
T .
F.(w,T)= = / f.(e“tat  for j=1,2
) or J-T !
does exist and in fact is equal to the Fourier transiorm of the cross-
correlation function
.. 1 T .
fl(t)fz(t + 7 =lHm = f (t)fz(t + Mdt (1-A19)
T-w 2T JT !
Hence,
T * i
fl (t)fz(t + 7 = A Slz(w)e- wwa (1-A20)
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The autocorrelation function f’lk (t)fl(t + 7) satisfies the relation
x *© iw”
f1 (t)fl(t + 7) = L Sll(w)e dw (1-A21)

and the average value |f;(t) 2 satisfies

]fl(t)p2=/ Syq(wdw (1-A22)

where Sll(w) is called the power spectral density function. Equations (1-A18)
and (1-A20) should be compared with equation (1-A13).

Equation (1-A19) shows that f}(t + tMa(t + tg+ 7 = {7 (Dt + 7.
Hence, the cross correlation of a stationary function is independent of time
translations.

Since the integral (1-A17) exists for finite T, we can use the theory of
Fourier transforms to treat stationary functions by introducing the ''shutoff'
function

0 t|>T
f(t,T) =
fty Jt/<T

Then F{(t,T) and f(t,T) are Fourier transform pairs and can be treated by
using the theory of Fourier transforms. At the end of the analysis the power
spectral density function can be calculated by taking the limit as T —~ indi-
cated in equation (1-A18).

This trick of only analyzing f(t) during the interval 2T is related to the
actual measuring process. Thus, the length of time required for the filter to
separate out the components within a band Aw/2r is longer the narrower the
bandwidth. However, we cannot afford to wait forever, although the only way
we can obtain a minutely detailed representation of the spectral density is to
average over an infinite time,

The stationary functions encountered in practice are usually random var-
iables. Because of the complexity of these functions the information lost by
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dealing only with the autocorrelation functions and power spectra is usually of

little interest.
These ideas can be extended to stationary functions of a three -dimensional
spatial variable y. The cross-correlation function of two functions f1(§7) and

f5(¥) is defined by

(@igT +m) = lim L / / £] iy + mdy
AV=x AV AV

where AV —« indicates that the volume element AV grows to fill all space.
It is related to the cross-power spectral density

*

So() = lim (2m3 L
AV=c AV

F} (k, AV)Fo(k, V)

(1-A23)

where

Fifk,AV) = 1 /Ufj(y)e'ik'yd§ for j=1,2 (1-A24)

@n3 AV

by the Fourier integral

<fI(;)f2(§’.+?7)>5/A/Slzﬁ)eik'ndl-(’ (1-A25)

We have again reversed the sign convention in the Fourier transform.
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APPENDIX 1.B
CLEBSCH POTENTIAL

In this appendix the Clebsch potentials «, 3, ¢, and n introduced by
Seliger and Whitham (ref. 7) are developed. Let 7 be any solution of the

equation
Dn._e . (1-B1)
D~
where
D_.2,v-v . (1-B2)
Dt o7

is the derivative following a fluid particle. Then it is an immediate conse-
quence of Pfaff's theorem (ref. 8) that at any instant of time 7 there exist
functions ¢y, 7, a(y, 7, and A(y, 7) such that '

(Vv-8vp) -dy =de+ adj {(1-B3)
or equivalently
V=Vey+8Vn+ av3 (1-B4)

We shall now show that the potentials « and 3 satisfy certain very simple
equations. In order to do this, however, we must first establish an important

theorem of fluid mechanics. Thus, let °y‘p(-§0, 7) denote the position vector at

the time 7 of the fluid particle which passed through the point _‘»"0 at the time
7=0. Then if the external force per unit mass l/p is conservative so that

_é_: -vQ 1-B5)

,
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the momentum equation (1-1} can be written in Lagrangian variables as

d%y (y~.
P --lop_vg
d72 p
where
- dy,
v=_2
-
is the fluid velocity. Hence,
— 2—.
Y. % 12 20
0 2 0 5,0 0
Byi dr ayi ayi

But the second law of thermodynamics (ref. 5) shows that

1

©dS =dh - —dp
p
where
h=e+p-
p

is the specific internal energy.

is the specific enthalpy and e

2-—.
¢ d%y
P. D _ _ it '+ O

~»
=)

Then

(1-B6)
(1-B7)
(1-B3)
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Upon introducing Lagrangian variables, equations (1-3) and (1-B1)

become

dS(
dr

y<y T, T =

and

g G, 0,0=-0
dr p

Then equation (1-B8) can be written as

o5, d%, 2 a [ s ans\  d [o @
p. % p__ h+Q) - Zfn 2)=- <h+sz+"> + A s
d .
ay? 4+ ay? T ay? ay? dr i (-y?
(1-B9)
But since
2— - - T 4
d ) d oy, dy. dy.
o Ypg. - Vbl Yp 2 Tpy,
\ 4.2 ay? T ay?o A dr ay? dr

where T/O = ;(-3./0,0), integrating equation (1-B9) by parts shows that

- @y, , .
eIl Y S S -<s__‘” (1-B10)
0 0 0\ ..0
oy ¥y Yy i/ =0
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where

X = / (h+Q —lv2>d7+nS
0 2

This result is known as Weber's transformation. We shall use it to determine

the governing equations for o and 3.
Thus, inserting equation (1-B4) into Weber's transformation shows that

v, = v.(-g} ,0) = 2 [(p(g;, ™+ x]+ SG?,O) a_nOG?’ O) + a(&', 7 CO d(;, 7)
ay§ Yy

Comparing this with equation (1-B4) shows that functions ¢, @, and 3 can
always be chosen so that

—~() - =
oy, 0) = w(yp, 7 + X

oG, 0) = oGy D (1-B11)
35°,0) = ;5(§p, 7) J

But since ; and 7 are arbitrary points on the path of the fluid particle, it
follows that

L (1-B12)
D~
Ds _ (1-B13)
D+

In order to obtain another relation connecting these potentials, notice that
the vector identity
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V-V =V -v X (VXV)
2

can be used to write equation (1-1) as

—

2 . -
N L oY Tx(uxT) V0 =Lvp A (1-B14)

T 2 o)

Then inserting equation (1-B4) into this relation shows that

2
le:-V gip+Sa_n.+a%+Q+v—-+VS%-VT]2-S-+V019§-V;322
p eT oT o7 2 Dt DT DTt Dt

Hence, it follows from equations (1-3), (1-B1), (1-B6), (1-B12), and (1-B13)
that -

v H+§£+Sa_n+a§£=0
oT oT o7

where

Hzhs+1vieQ < (1-B15)
2

is the stagnation enthalpy. We can therefore suppose without loss of gen-
erality (since adding a function of time to ¢ does not change v) that

~
AS)
23
3
)
o

H=_9_g@ 488 (1-B16)
T oT aT

T

In order to obtain an equation for the potential ¢, notice that taking the
dot product of equation (1-B4) with v and subtracting the result from equa-
tion {(1-B15) show that

H-VZ:—.IM-SE’_Q-C[D_B
D~ D~ D~
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Hence. it follows from equations (1-B 1) and {1-B12) that

Do_y2, 05 -H (1-B17)

—_—=V

Dt

Finally, taking the dot product of equation (1-B14) with respect to v

shows that
D (v2 1Dp _1dp . 39
St Q)+ = —
D7\2 pDr padT o7

Hence, it follows from equations (1-3), (1-B6), (1-B12), and {1-B13) that

p , o2 (1-B18)

where we have put

fEH—K(p-SKn—aKB

and Kw’ KW’ and KB are constants.
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APPENDIX 1.C

COMMONLY USED SYMBOLS

B

o) N

O Q. Q=

w

ot

T Bl

—

W
(8 9]

number of propeller or fan Ylades

convective amplification factor, 1 - M cos 8

chord length; local speed of sound

speed of sound at steady background state

viscous stress tensor

total force exerted by solid boundaries

frequency; or | f |

force per unit area exerted by solid boundaries on fluid
force per unit volume of fluid

fundamental solution of wave equation

free-space Green's function

fundamental solution of Fourier transformed wave equation
Fourier transform of T

magnitude of ?

intensity vector

time-averaged intensity vector

unit vector in Xy- or yl-direction

unit vector in Xg- Or yz-diréction

wave number

wave number vector

unit vector in Xg- OF yg- direction

Mach number, U/c0
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unit normal vector to solid surface (drawn outward from surface into

fluid)
acoustic power

pressure

pressure of steady background flow; or constant reference pressure

vector between observation point and center of moving source point

or region

| - -

X -5

X - ¥ vector between observation point and source point

entropy; Sears’' function; fixed surface

moving surface .

large time interval (eventually put equal to infinity)

Lighthill's stress tensor
period, £1

Lighthill's stress based on relative velocity v'

time associated with the arrival of sound wave at observation point

mean flow velocity

number of stator vanes

surface velocity

complete fluid velocity

velocity of fluid in moving frame, v; =V, - éliU

coordinates associated with observation point

coordinates associated with source point

normalized pressure autocorrelation function, p(t)p(t + 7)/p0c0;

Fourier transform of ¥
source term

Dirac delta function
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61} Kronecker delta {1if 1 - §; 0if 1=

E. moving coordinates attached to source

O temperature

7 polar coordinate (polar angle) or direction between line connecting

source and observation points and direction of motion of source

Km.n eigenvalue

h\ wavelength

v(T) volume of fluid exterior to solid surfaces

p density

Py density of steady background flow; or constant reference density
p' fluctuating density, p - pg .

o) reduced frequency; interblade phase angle in chapter 5

|

time associated with emission of sound wave

d phase or velocity potential
%) polar coordinate (azimuthal angle)
Q angular velocity
Q 'Q , or w(l - M, cos 9)
w angular frequency, 27f
Subscripts:
D drag component
T thrust component
0 constant reference value; or value of quantity in steady background
flow
Experimental data are presented as pressure or power levels in decibels.
dB. This means that the ordinate of the plot 1s either 20 IOgIO(_’ . where

p. i is some reference pressure (usually 2%x10° dynes/ cm), or 10 log10

L 7”1,}, where /. is some reference power tusually 10 "7 W'. The unwt of
frequency is the hertz (1 Hz = 1 cvele sec),
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CHAPTER 2

Aerodynamic Sound

2.1 INTRODUCTION

In an unsteady flow, pressure fluctuations must occur in order to balance
the fluctuations in momentum. But since all real fluids possess elasticity
(i. e., they are compressible), the pressure fluctuations can be communicated
to the surrounding fluid and propagate outward from the flow. It is these
pressure waves in the surrounding fluid which we recognize as sound.

At fairly low Mach numbers the pressure fluctuations in the vicinity of the
flow are substantially uninfluenced by compressibility and can be determined
from the velocity field by solving a Poisson's equation1

V2p=y

in which the source term ¥ is a known function of the flow velocity. However,
the Biot-Savat law shows that we can consider the velocity field to be in turn
driven by a prescribed vorticity field. And since Kelvin's theorem of conser-
vation of circulation shows that the vorticity in an inviscid fluid is simply car-
ried along with the flow, an initially localized region of vorticity will remain
that way for sometime to come. Thus, many flows can be envisioned as 1ei-
atively localized regions of vorticity which drive not only the pressure fluctua-
tions in their immediate vicinity but also those which occur at large distances.

The pressure fluctuations at large distances are weak and satisfy the
acoustic wave equation. Thus, in this region, which we shall often cail the

1Thcsc pressure [luctuations are sometimes called pseudosound.
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acoustic field, the effects of compressibility and the finite propagation speed
of acoustic waves are important. 2

Although the localized pressure fluctuations have been extensively studied,
the theory of aerodynamic sound is principally concerned with the study of the
pressure fluctuations in the acoustic field.° This subject probably began with
Gutin's theory (ref. 1) of the noise produced by the rotating pressure field of
propellers, developed in 1937. However, it was not until 1952, when Lighthill
(refs. 2 and 3) introduced his acoustic analogy to deal with the problem of jet
noise, that a general theory began to emerge. Lighthill's ideas were extended
by Curle (ref. 4), Powell (ref. 5), and Ffowcs Williams and Hall (ref. 6) to
include the effects of solid boundaries. These extensions include the theory
developed by Gutin and, in fact, provide a complete theory of aerodynamically

generated sound which can be used to predict blading noise as well as jet
noise.

The fundamental equation which forms the basis of the acoustic analogy
appr.oach is derived in the next section. The methods of classical acoustics
given in chapter 1 are then used to obtain solutions to this equation for the
case where no solid boundaries are present. (The treatment of solid bound-
aries is deferred to chapters 3 and 4.) These solutions are applied to high-
speed subsonic jets, and fairly detailed results are obtained. Supersonic and
low-speed subsonic jets are treated in a somewhat more qualitative fashion.

In Lighthill's acoustic analogy, certain terms associated with the propa-
gation of sound are treated as source terms. In practice, this places certain
limitations on the accuracy of the theory. Alternative approaches developed
to overcome these limitations are presented in chapter 6.

W2 . 3

2If the Mach number is sufficiently low, there will be an intermediate region where
the pressure fluctuations have some of the properties of both the localized pressure
fluctuations and those in the sound field. Thus, in this intermediate region the pres-
sure fluctuations arc as weak as in the sound ficld, but the distances involved are small
cnough so that the effects of finite propagation speed. and hence of compressibilitv. can
be neglected.

SThe difference in character between the pressure fluctuations in thc acoustic field
and those in the vicinity of the flow is evidenced by their relation to the flow velocity.
Thus, the localized pressure fluctuations are of the order pu! 2 where uw isa f:hr[z*—
acteristic veloeity. But it was shown in chapter 1 that the pressure fluctuations in the
sound field are of the order pegu'.
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2.2 LIGHTHILL'S ACOUSTIC ANALOGY

In this section we develop the acoustic analogy approach introduced by
Lighthill in two classical papers published in 1952 and 1954 (refs. 2 and 3).
This approach was initially evolved to calculate acoustic radiation from rela-
tively small regions of turbulent flow embedded in an infinite homogeneous
fluid in which the speed of sound o and the density py are constants.

In this case the density fluctuations, p' = p - py, at large distances from
the turbulent region ought to behave like acoustic waves and hence satisfy the

homogeneous wave equation4

1 % 2

-V
cg 872

p'=0

Lighthill arranged the exact equations of continuity and momentum in such a
way that they reduce to this equation outside the region of flow. ’

2.2.1 Derivation of Lighthill's Equation

In order to derive Lighthill's result, notice that upon using the summation
convention the continuity and momentum equations can be written as

—89+va =0 2-1)
aT  dy;
J
v, oe;
p__iw,_a_vi SNC) B 1
oT ]ayj oy; ay].

where e, is the (i,j)th component of the viscous stress tensor. For a
Stokesian gas it can be expressed in terms of the velocity gradients by

4The notation introduced at the beginning of section 1. 2 will be used in this sece-
tion.
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ay.

V. oV, cv,.
e = “(_1+_J_-25.._1:> (2-2)
j

where y is the viscosity of the fluid.
Multiplying the continuity equation (2-1) by Vis adding the result to the
momentum equation, and combining terms show that

0 9

a_‘rpvi = - a_yJ (pviv]. + Gijp - eij)
But after adding and subtracting the term5 cg ap/ayi, this equation can be
written as
opv, aT.. ‘
1+c(2)a_p=_ 1 (2-3)
oT ayi ayj
where

= . 2
Tj; = AV;V; + Oy [(p - pg) - cplo - po)} - & (2-4)

is Lighthill's turbulence stress tensor. Finally, differentiating equation (2-1)

with respect to 7, taking the divergence of equation (2-3), and then subtract-
ing the results yield Lighthill's equation

2 32T,
T 2y2p - (2-5)
ar2 ay; 9v;

2.2.2 Interpretation of Lighthill's Equation

Equation (2-5) clearly has the same form as the wave equation governing

5The subscript 0 is used here to denote constant reference values, which wiil
usually be taken to be the corresponding propertics at large distances from the flow,
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6 27 iie Ay, in
¢ Tij’”i aF Ina
nonmoving medium (see section 1.5. 2). It therefore shows that there is an

the propagation of sound emitted by a quadrupole source

exact analogy between the density fluctuations in any real flow in arbitrary
motion and those in an ideal acoustic medium at rest (with sound speed cO)
due to a distribution of quadrupoles of strength Tij‘

The crucial step in Lighthill's analysis is to regard this source term as
known a priori. (Notice that the nonlinear terms are all contained in the
source term). However, we never have complete prior knowledge of this term
since it involves the fluctuating density, which is precisely the variable for
which equation (2-5) is to be solved. In fact, since Lighthill's equation is an
exact consequence of the laws of conservation of mass and momentum, it must
be satisfied by all real flows: most of which are certainly not sound like.
Thus, in most cases, a knowledge of Tij is equi.valent to solving the complete
nonlinear equations governing the flow problem, which is virtually impossible
for most flows of interest.

Even for those flows which are sound like, the source term
(E:z'I‘i]./ayi ay].), aside from representing the sound emission, includes such
real fluid effects as the convection and refraction of the sound by the mean
flow, the scattering of the sound by turbulence and entropy spottiness, the
back reaction of the sound field on the flow itself, and the viscous dissipation
of the sound by the flow. The prediction of any of these effects requires that
the sound field (which is not known until eq. (2-5) is already solved) be in-
cluded in the source term.

In spite of these drawbacks the acoustic analogy approach serves as a
foundation for most aerodynamic sound analyses. This is probably due to the
fact that this approach allows us to use the powerful methods of classical
acoustics to treat aerodynamic sound problems. In chapter 6 we discuss pro-
cedures which have been developed to alleviate the difficulties associated with
this approach.

By incorporating suitable boundary conditions, we can apply Lighwhill's
acoustic analogy to flow in the presence of solid boundaries. As a first step,

(S . . . .

It is shown in the next section that this source term should vapish Hulside the
region of turbulent flow and hence (as indicated in the beginning of this scction) eq.
(2-5) does indeed reduce to a homogencous wave equation in this region.
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however, we shall consider the case where the effect of solid boundaries on
the sound field is negligible. Then the only important applications of the re-
sults will be to jet noise. (In fact, Lighthill actually developed his theory
specifically to deal with this problem.) In chapter 3 we show how solid bound-
aries can be included in the analysis and apply the theory to a number of spe-
cial cases. '

2.2.3 Approximation of Lighthill's Stress Tensor

Lighthill's equation can only serve as the starting point for the solution of
aerodynamic sound problems if it is possible to regard its right side as a
known source term. We shall now show that there are at least some flows for
which this is a reasonable assumption.

To this end, consider a subsonic turbulent airflow (or for that matter any
unsteady high-Reynolds-number subsonic flow) of relatively small spatial ex-
tent (such as the flow in a jet) embedded in a uniform stationary atmosphere.
The subscript 0 will now be used to denote the constant values of the thermo-
dynamic properties in this atmosphere. Within the flow we anticipate that the
viscous stress eij’ which appears in Tij’ will always be negligible compared
with the far larger Reynolds stress term pvivj. In fact, it is well known from
the study of turbulence that the ratio of these terms is of the order of magni-
tude of the Reynolds number pUL/u, which in virtually all applications cf
aerodynamic noise theory is quite large.

In the region outside the flow (or at least at sufficiently large distances
from this flow) the acoustic approximation should apply, and hence the veloc-
ity A should be small. Then the quadratic Reynolds stress term pvivj will
be negligible. In addition, the effects of viscosity and heat conduction can be
expected to act in this region in the same way as they do for any sound field.
This means (as shown by Kirchoff, see ref. 8) that they only cause a slow
damping due to the conversion of acoustic energy into heat and have & :icnpili-
cant effect only over very large distances. Thus, it should be possible to ne-
glect eij entirely.

Now assuming that the flow emanates from a region of uniform tempera-
wre, the etfects of heat conduction ought to be of the same order of magnitude
as the viscous effects (provided the Prandtl number is of order 1 as it is for
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most fluids). Hence, heat conduction should also be negligible within the flow.
Then the entropy changes will be governed by the inviscid energy equa-

tion (1-3). And, since it is assumed that the flow emanates from a region of
uniform temperature, this equation shows that the entropy should be relatively
constant. But it is shown in section 1. 2 that

P-Pg~= C%(P - po) (2-6)

in any isentropic flow in which (as is usuaily the case in subsonic flows)
(p - pg)/py and (o - ,oO)/pO are sufficiently small.

We have therefore shown that Ti' is approximately equal to pvivj inside
the flow and approximately equal to zero outside this region. Hence, upon
assuming that the density fluctuations are negligible within the flow, we can
approximate Lighthill's stress tensor by'7

T = pgViY (2-7)
But within the flow it is reasonable to suppose that the Reynolds stress pOViVj
can be determined, say from measurements or estimates of the turbulence,
without any prior knowledge of the sound field. Then the right side of Light-
hill's equation (2-5) can indeed be treated as a source term.

2.3 SOLUTION TO LIGHTHILL'S EQUATION WHEN NO SOLID
BOUNDARIES ARE PRESENT

It is shown in section 2. 2 that the problem of predicting the sound emis-
sion from a region of unsteady flow embedded in a uniform atmosphere can be
reduced to the classical problem of predicting the sound field from a known
quadrupole source of limited spatial extent. If any solid boundaries which
may be present do not influence the sound field to any appreciable extent, the
solution to this problem can be expressed in terms of the free-space Green's
function. Indeed after comparing equation (2-5) with equation (1-59), we see

70f course, it is being assumed that no combustion occurs m the flow. This could
result in large fluctuations in entropy and hence in (p - pO) - ¢ (p - py). This term
would then have to be included in T, ij*



AEROACOUSTICS

from equation (1-82) that this solution is given by8

22T
- 1 ij (= -
plx,t) - pg = > 153 (¥, 7) - dy (2-8)
r | dy. 9Y,
dmcg E T=t-(r/cq)
where
r=|x-y|

In order to transform this equation into a more suitable form, it is convenient
to introduce the differential operator &/ 6Y;» which denotes partial differentia-
tion with respect to y, with not only t but also r held fixed to obtain

- 2 Ty(,t-r/cy _
P&, 1) - pg = —— / - % a7 (2-9)
47103 5¥;97; r

Then since the operator E)/E)y.1 denotes partial differentiation with respect to
Yi with X and t held fixed and 3/ axi denotes partial differentiation with
respect to X5 with ¥ and t held fixed, the chain rule for partial differenti-
ation shows that for any function F(¥,T,t)

OF _F , F

8y, 2y ™Y

and hence that

8As indicated in chapter 1, the ~mission of the limits on a volume integral -enotes
an integration over all space,
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32F _ %F 2r
= — + — + — +
éyiéyj ¥y ayj °¥; éxj oy, €X. CX. CX,

Using this result in equation (2-9) shows that

2 T.. o) ': —
p(F 1) - pg = —1 I 5 -SSR
4rrcg Vi ayj r 4rrcg ij it i
12 o |Tij|,= 1 a2 Ty
+ —_ LBy + — 2l dy (2-10)
4rrcg axi ay]. r 477(:(2) axi oxj i r

provided the integrals exist. In this equation the notation [Tij/r:] is used to
denote Tij(3'r',t - r/co)/r. Notice that the integrand in each of the first three
integrals is the divergence of a vector. But if SR denotes a sphere of radius
R, the divergence theorem shows that

So ig-um [ i@

R—-~ " “R

- _ Y
for any vector A for which the integrals exist. Hence, upon assuming” that

Tij is smooth and decays faster than y'1 for large y, we can conclude that

9\\'0 show in section 2, 2 that outside a localized region of turbulent low where the
viscous and heat conduction ctfects are negligible, T.. behaves like pYiVie But o this
outer region, vy will not decay any slower than the rate )"1 al which the acoustic
particle velocity decays (eqs. (1-93) and (1-94)). Hence, Tii must decayv at teast as
fast as v™2 But we cannot be surc that the last integral in eq, (2-10) will converge
unless Tij is known to decay faster thun V2 However, ihe inc ompee sl
velocities, which dominate (at sufficiently low Mach numbcers) in the vegion of o locul-
ized flow, decay as y'3 for large values of v, Thus, if we could begin by completely
neglecting the contribution of the acoustic velocities, Ty; would decay as v~ and the
last intcgral in eq. (2-10) would certainly converge. By using the method of matched
asvmptotic expansion, it can be shown (ref. 9) that this approximation i= w7t wohen-
cver the wavelength of the sound is large compared with the size of the source regjon.
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these integrals vanish and that equation (2-10) becomes

_ 2 T.. /_ _
p(x,t) - pg = 1 ¢ - <y,t - L)dy (2-11)
4nc(2) axi axj r ¢y

In aerodynamic sound problems we are usually interested in the sound
at large distances from the source where, as we have seen, the expression
for the sound field becomes particularly simple. Thus, first consider the
case where the observation point X is many wavelengths away from any point
in the source region. (This distance need not be large relative to the dimen-
sions of the source region.) Then upon using the manipulations described in
section 1. 5. 2 the second partial derivative of the integrand in equation (2-11)
becomes

32 Ti].(y,t - 1/cp) ) rir aZTij(if,t - r/cp)

axi axj r cgr3 at2

+ O(r_z)

where

ol
(]
)
i

<

Hence, for large r,

> 1 rir] le - r\, ;=
p(x, t) s R — T(y,t‘— dy
4:rrcO recy

If the distance between any source point and the observation point is also large
compared with the dimensions of the source region (i.e., if the observation
point is in the radiation field), we can (upon assuming that the origin of the
coordinate system is in the source region) replace rirj/r3 by x.lxj/x3 to ob-
tain
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2
X.X. 3°T..
pE 1) - pg~ 2L f L _ ] <37,t -L>d? (2-12)
4rc x5 2 a? <o

10

provided the integral converges. This equation allows us to calculate the

density fluctuations in the radiation field once the source term is known.

2.4 APPLICATION OF LIGHTHILL'S THEORY TO TURBULENT FLOWS
2.4.1 Derivation of Basic Equations

The most important application of the solution (2-12) is the prediction of
sound from turbulent jets. 11 But for turbulent flows it is reasonable to as-
sume that the stress tensor Ti' is a stationary random function of time.
Then equation (2-12) shows that the density fluctuation in the radiation field
must also be a function of this type. For such sound fields (see section
1.7.3.2.1) both the average intensity and its spectrum can readily be deter-
mined from the normalized pressure autocorrelation function

T = [P&Et+7) - pgJ[p% O - by )

PgCq

And since equation (2-6) must certainly hold in the radiation field, it follows
from equation (2-12) that this function is related to the source term by

2 .2
- X, X.X, X ¢°T,. _ ¢"T - -
P, 7 = L 1Tk — U g, ey K enay ay
16n2c8p0 xs Etz Etz

(2-13)

10 .. . . o
The convergence of this integral now requires that Ti} decay faztor than o7+
lor large y.

111t can also be used to predict the sound from periodic jets, Sce section 2.5, 0.
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where
t'=t - X-3
o
(2-14)
RO A
o

It is shown in the appendix that the integrand in equation (2-13) can be put

in the form
5 S P 44
1@t F 1 = S T, T 77, ) (2-15)
at2 at ard

But since (as shown in appendix 1. A. 3) the cross correlation of a stationary
function is independent of time translations, it follows from equation (2-14)

that

Tij(37',t')TkL(37',t") = Ty, Ty (T',t pre Y lc- x -y l) (2-16)
0]

And since |X - ¥'| behaves like

K-7l=x-% §Fso6h
’ X
for large x it follows that
ll“-{.-S?i - !—)Z_;”\ Ng (?'.' ?) (2_17)
X Cy

Finally, inserting equations (2-13) to (2-17) into equaticn (2-13} shows *hat
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(V)

out

-~ 1 NN o s = —
T(x,7) = _z-/'/Tij(y',t)Tkl(y”.TO)dy' dy'’ (2-18)

2.5
167 CoPo

r‘,
)

where

—

TSt T+ TR

XCO

It is now convenient to introduce the separation vector 7 = y'' - y' asa
new variable of integration in equation (2-18) and to define a two-point time-
delayed fourth-order correlation tensor by
T T (7t 7) - op G20

ST oy = 1) ~14
g?l]kl(y s 1 ‘) = [)2 (2 19)
0

where ¢, ijki is an arbitrary time-independent tensor which will eventually be
chosen to sunphfy the equations. Then, since the Jacobian of the transform
y y" - y n is unity, inserting these quantities into equation (2-19) shows
that

—_

w47
o 1sz el ;)dy di  (2-20)
a7 o -

_ PO X% -4
1_,(X’T):O kZI

16112

This equation relates the pressure autocorrelation in the sound fieid ‘o the

source correlation tensor % Taking its Fourier transform and using

ke
equation (1-1295) and table 1-1 in appendix 1. A show that the intensity spec-

trum in the radiation field is given by

4 R R P

I.(X) = R elwE R CO]f?t‘-. (¥'. 7.7 dv' dij dr

ST .30 6 AL
vl LO RS o

12-21)
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This equation can, in principle, be used to calculate the spectrum of the sound
field emitted from a turbulent flow whenever solid boundaries ao not play a
direct role in the process. However, most turbulent flows which are not in
the immediate vicinity of solid boundaries (e.g., jets, wakes, etc.) have
nearly parallel mean flows. In the next section we deduce certain properties
of the correlation tensor which will be helpful in understanding the sound
fields proGuced by such flows.

2.4.2 Parallel or Nearly Parallel Mean Flows

Whenever the mean flow is nearly parallel, it is of interest to consider
the case where the velocity V(¥,t) is the sum of a parallel mean flow iU(ys)
as shown in figure 2-1 and a fluctuating part U(y,t) with zero mean so that12

v, = 6hU +u, (2-22)

2.4.2.1 Special form of Reynolds stress approximation to correlation

tensor. - Before turning to more general considerations, we shall attempt to

Y2

U‘Yz)
L —o

"

Figure 2-1. - Unidirectional transversely sheared
mean flcw.

X
“~This type of model tor the turbulence correlation tensor appeiss Lo nave heen
introduced by Ribner (refs. 10 and 11).
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gain some insight into the connection between the turbulence velocity correla-
tions and the correlation tensor gijkl by approximating Tij by the Reynolds
stress. Thus, substituting equation (2-22) into the Reynolds stress approxi-
mation (2-7) and choosing Pijki in equation (2-19) to be

2 12 211112 T Ty
U’ 611513 '7u2' + gV 61k012Y4 u' + ugregn 511'513'51}{611 Ui g
show, after carrying out a very tedious calculation, that12
vy _ T u't vr 1AFTIA
1Jkl y n,‘)/ ul uiuJ Z)+4U Gluu L) + 4U0'U’ 6 lku]ul

(2-23)

where the double primes indicate that the quantities are to be evaluated at 3;"
and t + 7, while the primed quantities are to be evaluated at S;' and t. The
notation /= indicates that the quantities on both sides of the equal signs are
not necessarily equal but merely make equal contributions to equations (2-20)
and (2-21). In order to obtain this relation, we changed the names of dummy
indices in the summations and used the equation

U’ éhu u"ué'/ = U"leu{ujfuz'

obtained by changing the variables of integration from y',7 to - and y'+ 7
and then using the invariance of the turbulence correlations under time trans-
lations. 13

2.4.2.2 Introduction of moving coordinates. - Let ! denote a typical

correlation length of the turbulence. Then ! is roughly the smallest length

for which

.., 0,7) -
-”kl— 0 whenever |n|>l

ljkl (y y Oy T)

13 The calculations are carried out in more detail in ref. 12.
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Wire separation "lgl in
~
/

“ 5 0 50 100 150 20 250
Time delay, T, usec

Figure 2-2. - Isocorrelation contours in moving frame (measurements in mixing region 1% diameters down-
stream), (From ref. 13.)

If gijkl changed so slowly with time that it was practically constant for time
changes of the order of l/c0 (the change in retarded time across a turbulent
eddy) or, what is the same thing, if Tn (the characteristic decay time of a
turbulent eddy) satisfied the inequality

;o> b (2-24)
n CO

it woulc_i.be pos-s.ible to replace Ql.ljk_[@.',;'-xr + X - n/xcq) by 51 CANTRER
since (n/co) ©X/x = O(l/co) in the region where the integrand in equa-

tion (2-20) is of significant magnitude. Indeed, if it were not for the mean
flow, a plot of constant correlation contours might appear as shown in fig-
ure 2-2 and the inequality (2-24) would then be satisfied. However, [or .nov-
ing eddies, especially at higher velocities, the turbulent fluctuations (seen by
a fixed observer) will appear to be much more rapid because of the convec-
tion of the random spatial pattern of the turbulence by the mean flow. This
rapid convection of the eddy pattern therefore causes the turbulence fluctua-
tions with time seen by an observer moving with the mean flow to be much
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10—

Wire separation - fixed frame, . in,

-50 0 50 100 150 200 250

Time delay, T, usec

Figure 2-3. - isocorrelation contours for fixed observer {(measurements in center of mixing region 1% diameters downstream!,
(From ref. 13.)

slower than those seen by a fixed observer. Hence, the eddy pattern appears
to be nearly frozen. 14 As a result the constant correlation contours in an ac-
tual flow will resemble those shown in figure 2-3. In fact, this figure is a
plot of actual measurements of the second-order time-delayed correlation
ul(?, t)ul(g;' + f771,t + 7) carried out in the mixing region of a jet by Davies,
Fisher, and Barratt (ref. 13). The inequality (2-24) will therefore not gen-
erally be satisfied in most real flows. But in any coordinate system which,
roughly speaking, ''moves with the eddies'' the constant correlation contours
should again resemble those shown in figure 2-2. (In fact this figure was ob-
tained from fig. 2-3 by introducing just such a coordinate system.)

Thus, suppose that the correlation tensor gijkl (7, 7) is expressed in
terms of the variables 7 and

147his result is frequently referred to as Tavlor's hvpothesis.
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E=n- fCOMCT (2-25)

where i is a unit vector in the mean flow direction (i.e., yl—direction) and
coM, is the slope of the dashed line in figure 2-3. Then &, will remain
constant along any line having this slope. Hence, a change in £, with 7
held fixed corresponds to a movement in the direction perpendicular to these
lines. The constant correlation contours in the gl - 7 plane must therefore
resemble those shown in figure 2-2. And, as a consequence, the decay time
T of the '"moving-axis correlation tensor"' Rijkl defined by

Rl]kl (y’y E; T) = gl]kl (y') un T) (2-26)
is more likely to satisfy the inequality

>> 4 (2-27)

r
3
€0
than is the fixed-frame decay time 7_.
Substituting equation (2-26) together with the change of variable (2-25)
into equation (2-21) shows that

4
= ‘”Po xx kx X I
IwGE)= ///(eXp{lw[(l-M cos@)r-l(-i 1kl(y T, )dE dy' dr
3275 c X S J
where
X
cos£9=—1
X

is the angle between the direction of mean flow and the line between the ob-
servation and source points shown in figure 2-4. The essential simplicity of
this equation becomes especially apparent when the four-dimensional power
spectral density tensor
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o}

8
\ o

Me

Figure 2-4. - Orientation of observation point relative

to flow direction.

1 * i(wT-E- E) = o
1Jkl(y k U)) = - ./o‘o /e R’”kl(y;‘s)T)dg dA

(2m*

is introduced to ohtain

4
- . TW P XXX X -
I (x)= U W kly’_—’
6 U cy X

w
5
200 X

X w(l - M cos Q)de‘ (2-29)

Instead of carrying out a similar operation on equation (2-20) for the pressure
autocorrelation function, it is simpler to take the inverse transform of equa- -

tion (2-28) to obtain
, N

R
X C
. 9 ) Rt

/

‘(xx 4

-M LL)S‘j

XX xkx _
Rijkl yE7 . S——
(I-M cosd 4 x4l - M el - M. cos )

T(x, 1) =
16* c

1

16n c0

df dy'

\ 1‘\/1 cos

(2-30)
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Aside from the possible advantage of being able to neglect the retarded time,
this equation possesses the additional advantage over equation (2-20) of being
less sensitive to small errors in the correlation function. In order to see this,
notice that the largest changes of the correlation function with respect to time
occur as a result of the convection of the frozen eddy pattern by the mean flow.
Hence, the largest part of the time derivatives of gijkl and therefore of the
integrand in equation (2-20) will be due to the convection. But the uniform
subsonic convection of a frozen eddy pattern cannot contribute to the sound
field. Hence, only a small part of the integrand does not integrate to zero.
This difficulty does not occur with equation (2-30) since the changes with re-
spect to time now occur on the time scale of the sound-producing turbulence
fluctuations. The integrand in this equation should therefore be much less
sensitive to small errors made either in the measurement or in the analytical
approximation of the turbulence correlation. This is extremely important
since this quantity is quite difficult to determine accurately.

As pointed out by Ffowcs Williams (ref. 14), equation (2-29) shows in a
particularly explicit way which components of the turbulence generate the
sound field. Thus, it shows that for turbulence measured in the moving frame
the wave number vector of the sound field ()?/x)(w/co) is the same as that of
the turbulence which generates it. However, the frequency of the turbulence

Line of sound-producing elements
iStope = -cq(l - MC cos AN

Caonstant-nower
contours

= -

Figure 2-5. - Moving-frame turbulence power spectral density function
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L

{s eqnal to the Doppler tactor (L - A\IL_ cos o) times the frequencey of the sound
it generates. A plot of a typical moving-frame turbulence power spectral
density function (ref. 14) in wave number - frequency space is shown in fig-
ure 2-5. It reflects the fact that in the moving frame the turbulent energy is
concentrated around the low {requencies. But equation (2-29) implies that all
the sound-emitting elements must lie along the line shown in the figure.
Hence. the part of the turbulence spectrum containing the maximum energy is
by no mcans alwayvs the part which emits the most sound. At subsonic con-
vection speeds these parts coincide more closely for forward emission
(iH [ -~ 7,2) and high Mach numbers than they do for backward emission and
low Mach numbers. Accordingly, more sound is emitted in the forward direc-
tion than in the backward direction; and the higher the Mach number, the
greater the forward emission.

2.4.2.3 Neglect of retarded time in subsonic flows. - Equations (2-29)
and (2-30) have been put into a form where omission of the retarded-time
variation introduces the smallest error. Inspection of equation (2-30) shows

that this term can be neglected whenever the decay time 7, of the moving-
s

axis correlation is so long that

L << 7 (2-31)
co(l - MC cos 9) §

Thus, when the inequality (2-31) is satisfied, equation (2-30) can be approxi-

mated by
_ 0 X.X. X 4 - - -
rE ) s — ;is-kx‘l —1———5- = Ry (7 5 7) dE dy"
2.5 4
16n%, X (1 - M, cos 9)"{or 7=t/(1-M, cos &)

(2-32)

and hence its Fourier transform (eq. (2-29)) can be approximated by
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_ 4 e e o
720 NN RS -, T .
j / Hijkz[:y L0, w(1 - M, cos 1]dy (2-33)

[ (x) =
* D b
2LO N

It is important to notice that equation (2-33) does not imply that the sound is
emitted by the zel'o—{x'zl\'e—lluxllbel' components of the turbulence. In fact,
these components radiate no sound at all. The equation simply implies that
the energy in the turbulence at the small wave number (w/‘co)(;'/x) at which the
sound is emitted is approximately the same as the energy in the turbulence at
K - 0. The quantity l/co(l - M, cos 8) which appears in the inequality (2-31)
can be interpreted as the time it takes a sound wave to cross a moving eddy at
an angle . Thus, if the eddy is small enough so that this time is much less
than the eddy decay time, the retarded time can be neglected. Notice that, as
the convection Mach number of the eddy increases, the error created by ne-
glecting the retarded time gets worse. Hence, this approximation is essen-
tially limited to subsonic (or perhaps very high-Mach-number supersonic)
flows.

2.5 PHYSICS OF JET NOISE

In this section the equations derived in section 2. 4 will be used in con-
junction with experimental observations of jet flow fields to explain and pre-
dict various types of jet noise.

2.5.1 High-Reynolds-Number Subsonic Cold-Air Jets

The sound emission from subsonic cold (i. e., unheated) air jets has been
more extensively studied than any other type of jet noise. We shall show sub-
sequently (near the end of section 2. 5. 1. 2) that the inequality (2-31) is reason-
ablv well satisfied in the sound-producing region of such jets so that equa-
tion (2-32) can be used to predict the noise. However, this cannot be done
unless the turbulence correlation tensor Rijkl is known. Since our knowledge
of this tensor is quite limited, we shall try to model it in some approximate
{ushion. This will be accomplished by making a series of progressiveiy more
restrictive assumptions. Each of these assumptions will allow us to obtain a
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formula for the sound field that requires less information about the turbulence
than the preceding one.

2.5.1.1 Approximations to source term for subsonic jet flows. - The
parallel mean flow approximation (2-22) and the Reynolds stress approxima-
tion (2-7) should be adequate to describe the flow in a jet and are therefore
adopted in this section. Then equations (2-23) and {2-26) show that the
moving-axis turbulence correlation tensor is the sum of three terms. How-
ever, it is shown in reference 12 that, if the turbulence is assumed to be lo-

cally homogeneous and incompressible, the middle term integrates to zero
and only the first and last terms contribute to equation (2-32). It is now con-
venient to change the variable of integration in equation (2-32) from ¥ to y,

where

- { Vo + Yy Y3+ Vg )
yE

t
vy g
= {y']_, Y'2+-;-n2, .Vé“‘éﬂg}

Then in view of equations (2-23) and (2-26), equation (2-32) becomes

- P X, XX X,
My = —2 ik 1
16n2c8 x6 (1- M, cos 8)5

4
3 0 (TF \aF 0= 7 \aF
oT th/"(l—MC cos 6)

(2-34)

where

0 o7 ot Tt _ ottt
Ri].kl(y,g,q—)_ uiu.'i, uplu - g ugtal

0 7.y m
R[](y’ 'E:T) = ujuz‘
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are, respectively, the fourth- and second-order time-delayed turbulence ve-
locity correlation tensors.

Now let _I(J_('H/') denote the average intensity, at the point )?, of the sound
emitted from a unit volume of turbulence located at the point y, and let
Yw (X|¥) and T(X|¥, t) denote its associated spectra and autocorrelation func-
tion, respectively. Then

1) = / (63

and it follows from equation (2-34) that

7. 1,G = [1,GIPGF. rE0 = [ TE]F, )7

- P x.x.xk
F(X\y,t): 0 - 1]6)%
lﬁnzcg(l - MC cos §) X
4
3 0 - - 0 =
i 7=t/(1-M_ cos 6)

(2-35)

The first term in this equation is called the self-noise and the second term is
called the shear noise. This terminology was introduced by Lilly (ref. 15) to
indicate that the former represents noise generated by turbulence-turbulence
interactions whereas the latter represents noise generated by turbulence -
mean shear interactions.

In order to predict the variation in the sound field around the jet, it is
necessary to make some assumptions about the relative magnitudes of the
various components of the turbulence correlation tensors. Perhaps the sim-
plest such assumptions are those made by Ribner (refs. 11 and 12). The first
of these is that the joint probability distribution of the velocities at two points
is approximately normal. It is shown in books on turbulence (e.g., Batche-
lor (ref. 16)) that this assumption implies that the fourth-order correlation
can be expressed as the sum of products

0 _
ijki =

0,0 0,0
R RikRjL + Rié Rjk (2-36)
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of second-order correlations. The other assumption is that the turbulence is
isotropic. This means (ref. 16) that the second-order turbulence correlation
tensor is an isotropic tensor and hence that there are functions A(¢,7) and
B(¢, 7) such that

RO(E 7) = Al, 188 + B(E, 78

But for incompressible flows the continuity equation implies that A and B
are related by (ref. 16)

4A + £ A L1328 g
ot &£ 9%

Introducing these approximations into equation (2-35) and carrying out a rather
tedious calculation shows that

- - P
r(x IY) t) = 0
16n2c8(1 - Mc cos (-))5x2
4
X {LURCI)III df + 4(cos49 + cos?s sins sinz(,o) '/‘U'U"R?1 d'{]}
4
aT ‘ -:=t/(1-MC cos 9)
(2-37)
where
CcOos = xz
(p =
*(2 + x2
Yxg + X3

is the azimuthal angle shown in figure 2-6. For axisymmetric jets, averaging
over this angle will account for the different orientations of the sound sources
in any given annular slice of jet. Then equation (2-37) becomes
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direction
X2

Figure 2-6. - Coordinate system for jet flow.

Po

r‘(;‘;y t)av =
16rr2cg(1 - M, cos (9)5)(2

4 — eos? 2 -
x 42— /3?111 df 4+ C08 8+ COS 0 94/U'U"Rc1)1 dE
4 2
o7

Taking the Fourier transform of this equation and using the relations (between
the intensity, its spectra, and the autocorrelation function) given in section

1.7.3.2.1 now show that

T:t/(l-Mc cos 7)
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4

—~— 2 Po
IV, = i3
32n3cg(1 - Mc cos 8) x
,C0s 8 +cos’d 4 4 cos?s 4 iQr U'U"RO dF dr
R1111 5 e 11 46 @7
(2-38)
where
Q2= w(l - MC cos )
and that
g p ‘34 - 4‘4 . 2 )
I(X|)7)av= 0 /Rglll dz (1 L £os TCOS 4 A)
167'208(1 - M cos 6)5 2 &‘74 20 2
(2-39)
where

>
It

is the ratio of the maximum shear noise to the self-noise. By assuming a
specific model for the turbulence correlation functions, Ribner (refs. 11
and 12) has estimated that A= 1.

From similarity considerations we expect

4

«"‘ O -
—_ R de
_‘~4_/‘ 1111 -5

o 7=0
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to be of the order (u'4l 3/72)1(, where u' denotes a typical root-mean-square
turbulence velocity and K is some dimensionless constant. Hence,

-4 ,4,3

— palT,) u' il 4 2,

I(X‘y)avz K .0 3 <1+ cos 6 + cosH (2-40)
16n208(1 - M, cos 8)5x2 2

The total power emitted per unit volume of turbintence 2(y) is obtained by
integrating equation (2-40) over the surface of a large sphere of radius x.
Thus, upon neglecting the variation of the term

<1 + cos?s + cosze\
2

with angle in comparison with the (usually much larger) variation of
(1- M, cos 9)_'5 and replacing it by its approximate average value of 3/2, we
obtain

- g Kngatt? 1w
?(y)%a - 2“4 (2-41)
(3TTCOTE (1 - MC>

9.5.1.2 Fluid mechanics of subsonic jets. - The approximations given in

the preceding section were introduced to simplify the equations and are, for
the most part, not based on any specific information about the flow field in a
jet. In this section, we shall summarize those aspects of the jet flow field
which are relevant to jet noise. The information is based on the nmeasure-
ments of Laurence (ref. 17); Davis, Fisher, and Earratt (ref. i) and Brad-
shaw, Ferriss, and Johnson (ref. 18).

Consider a high-Reynolds-number air jet issuing from a convergent no0Z-
zle with a fairly uniform velocity UJ into a stationary fluid, as shown in fig-
ure 2-7. As the jet issues from the nozzle an annular mixing region forms
between the jet and its surroundinzs. The flow in his rocion hecomies murbu-

lent within about one-half of a jet diameter downstream. It then spreads
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Figure 2-7. - Jet structure.

Nozzle wall

i
! . .
tPseydolaminar jet

Jet

Figure 2-8. - Boundary of mixing region.

linearly into both the jet and the surrounding atmosphere until it fills the en-
tire jet at 4, or perhaps 5, diameters downstream. Hence, the thickness of

the mixing region is about 0.2 yy to about 0. 25 ¥q- The flow within the
conical region bounded by the turbulent flow remains laminar, and hence this
region is called the potential core. Of course, the boundary of the jet mixing
region is not straight as shown in figure 2-7 but has more the appearance
shown in figure 2-8. Once the mixing region fills the jet its uniform growth
ceases and it evolves differently as it passes first through a transition region
and finally, at about 8 diameters downstream, into a region of self-preserving
flow called the fully develuped region. The latter region also grows linearly

with Yy but at a different rate than the mixing region. Schlieren photographs
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(b Jet-exit Mach number, U, ‘¢, 0.74.

Figure 2-G. - Schiieren photographs of flow in a high-velocity subsonic
jet from a 7 g-centimeter(3-in.)diameter nozzle. (Taken by W. L.
Hawes at NASA Lewis Research Center.)
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Figure 2-10. - Mixing-region profiles.

of a typical high-velocity subsonic jet are shown in figure 2-9.

The mean velocity profile and the mean square turbulence velocity varia-
tion across the mixing region are shown (roughly to scale) in figure 2-10. The
turbulent energy is confined to a fairly narrow region about the center of the
mixing region, and the peak turbulence int.ensity u;nax at the center of the
mixing region remains fairly constant well into the transition region. It is

approximately equal to

u;naxz 0. 16 Uy (2-42)
Within the fully developed region the mean velocity falls off as yil.

In the mixing region, each turbulent '"eddy'’ is believed to be elongated in
the direction of flow. 1 Thus, the longitudinal correlation length ll in the
direction of flow is about twice the longitudinal correlation16 length 12 in the
radial direction. These correlation lengths both vary linearly with distance
from the nozzle and, in fact,

15There is some recent evidence to indicate that the long axis may actually be at a

457 angle to the flow direction.
rhe longitudinal correlation length in the ithedirection is nere defined 1= the
distance for the longitudinal correlation coefficient in that direction, Rﬁ(_s_"". Kisp. 0y /

Rji(v'. 0.0) (no sum on (i = 1, 2, or 3)), to fall to 1/e. The quantilv &; cenotes the
unit vector in the iLh—direction.
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[1 = 0.1 Y1 and Z2 ~ 0.05 ¥y (2-43)

In the fully developed region the correlation length is relatively independent of
v, to about 20 diameters.

A suitable measure of the decay time 7, is the time taken for the second-
order moving-frame turbulence correlation to fall to 1/e of its 7 =0 value.
Davies, Fisher, and Barratt (ref. 13) found that along the centerline of the

mixing region this quantity satisfied the relation
l=0.2 UJT‘g (2-44)

Hence, for Uj < g the inequality (2-31) is fairly well satisfied. And, as a
result, we are fairly well justified in adopting the assumption (see section
2. 4.2.2) that the retarded time is negligible.

The eddy convection velocity U, = coM, has been measured in the mix-
ing region by a number of investigators (refs. 13 and 19 to 21). Measure-
ments taken by Davies, Fisher, and Barratt (ref. 13) are shown in fig-
ure 2-11. The figure shows that the convection velpcity varies across the

U iUy

G Ay 450
a At ‘,‘1=1.SD

Convection vetocity ratio, UC/UJ; Medn
velocity ratio, U/U,

-1 0 A 2
Normalized radial distance, {y; - % D\)/yl

Figure 2-11. - Radial distribution of convection velocity. Fromi ref. 3
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mixing region but not nearly as much as the mean velocity. It is equal to the
mean velocity and to about 0. 62 UJ at the center of the mixing region, where
most of the turbulent energy is concentrated. These curves vary very little
witn axial cistance yq-

Z.5.1.3 Power emitted per unit length of jet. - In this section we use the

measurements described in section 2.5. 1. 2 to estimate 9"(y1), the power
emitted per unit length of the jet. This quantity can be approximated by mul-
tiplying the power emitted per unit volume given by equation (2-41) by the
cross-sectional area of the jet A(yl) to obtain

3Kou' % 3 1+ M2
Py )% ———— ; Alyy) T —u (2-45)
]
167rc07£ (1 - MC)

First consider the mixing region. The cross-sectional area of this an-

nular region is

nDy1
A(yl) = 7D X (Thickness of mixing region) =
We can estimate the correlation length { and u, .. in equation (2-45) by
= Zl
and
Ut Uy

Then upon inserting the empirical equations (2-42) to (2-44), equation (2-45)
becomes

8 2
pOUJD 1+ Mc

cg (1 - M2,\4
\ C/

Py ~ 5x10” "7 K (2-46)
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This shows (since Mc is independent of yl) that the power emitter per unit
length of the mixing region is independent of axial position y;.

Notice that, since the local mean velocity U in the mixing region (say
along the centerline) is independent of yq, equations (2-42) and (2-44) imply
that within this region Tt x /U and u' <« U. Although the experimental in-
formation is less complete beyond ¥y = 4D, it is not unreasonable to assume
that this proportionality is still maintained (even though U now varies with
yl). Then equation (2-45) implies

18
P'(y) = —Alyy (2-47)
l

Now consider the fully developed region y; > 8D. Since the centerline
velocity falls off as yil and since the cross-sectional area increases roughly
as y%, it follows from equation (2-47) that

1

?'ly) = —— (2-48)
yll
! |
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Figure 2-12 - Distributien of oower emission in a jet.
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which shows that the power emitted per unit length approaches zero very ra-
pidly in this region. Although the correlation length { becomes proportional
to vy for large values of Y1 it appears to be fairly constant to y; ¥ 20D.

Equations (2-46) and (2-48) show that the power emitted per unit length of
jet varies in the manner indicated in figure 2-12. Thus, according to these
arguments, 1 practically all the power is emitted from the first 8 or 10 jet
diameters, with most of it coming from the mixing region.

9.5.1.4 Comparison of predicted sound field with experiments. - The

total power 2y emitted from the mixing region can be approximated by
multiplying equation (2-46) by the length 4D of this region to obtain

842
& . PoUsP
6 PO~

7
5 . 2\4
<o (I—MC>

2
1+MC

‘?M x 2X10

Since the factor

1+ M2
(1 y Mg)4

is a slowly varying function of UJ compared with Ug, we can replace it by
its value at M, = 1/2 to obtain

8.2
-6 ., PoYsP

P~ gx1070 k22—
M 5
o

If roughly one-half the power comes from the mixing region, the total sound

power emitted by the jet P is approximately

paUD
P~ 1.6x1072 K—O—;—— (2-49)

o

17... . . . .
“he reasoning used in this section is, of course. highly approximute and the

aetual distribution of emitted powcer in the jet is still conlroversial,
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This is the now famous U8 law of jet noise obtained by Lighthill. The small
size of the number 1. 6><10’5 is a consequence of the inefficiency of the quad-
rupole source. Measurements of the sound emission from subsonic air jets
with low initial turbulence levels indicate that the ' Lighthill parameter
Q‘T/(pOUgDZ/cg) is-about 3x10'5. Hence, considering the very approximate
nature of the arguments, equation (2-49) is in very good agreement with the
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Figure 2-13. - Variation of total sound power leve! with jet velosity for subsonic rircular nozzles. (Aff data
scaled to an area of 1 4% 2nd an ambient temperature of 98 K (770 F1. Free-fieid 'assies: data, From
ref 220

138



intensity, 1, dB

AERCDYNAMIC SCUND

10—
\\
~~ Jet-exit
>~ Mach number,
~
e SN N o 0.409
~ o) . 568
- N \\\ D[> 710
~~ ~ — — — Lighthill's theory
~ ~o
~ AN
00— © ~— ~-
a ~ ~ D
\\ ~ DN
o - ~— N
— ~ ~w
\\\\ O \\ \\\
~ ~ -~
~— -~ T~
) O ~ ~ m] ~—
e} ~ ~ o
90 — ~ ~—
O \\ —
\O‘ \\\
\\ T—— —
~0
l—_— — . \\\\
\\\ ———
80 p— o \\\\
<o O\\\\
~—_
\\\\ O
70 ] 1 I | | | | !
15 30 45 60 75 90 105 120 5 150

Angle from jet axis, 8, deg

Figure 2-14, - Experimental directivity data from reference 22. Jet nozzle diameter, D, 5.08 centimeters (2in. ).

. . s o 18 , . e
observations. For jets with high initial turbuience, the Lighthill parameter
can increase by more than a factor of 30.

The good agreement of the eighth-power law with the experimental data is

iilustrated in figure 2-13. This figure, taken from reference 22. is 2 com-
posite of Lewis data and data taken by Lush (ref. 23). Equation (2-40) shows
that the directional pattern of the jet noise is the result of the convection fac-
tor (1 - M, cos 9)'5, which arises from the motion of the turbulent eddies rel-

¥ post jets with high initial turbulence produce considerable inte rnal noise, wnich

is difficult to separate from the jel noise.
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ative to the observer, and the factor

1+ cos49 + cosze

2

which results from the structure of the sound sources and is called the '"basic

directivity pattern' by Ribner (refs. 11 and 12). Because of the large expo-
nent (5) the directivity patterns tend to be dominated by the convection factor.
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Since most of the sound is probably coming from the mixing region, it is rea-
sonable to assume that Mc is approximately equal to 0.62 UJ/CO. The di-
rectivity patterns predicted by (1 - M, cos 9)"'5 with this value of M, are
compared with the air-jet sound field measurements of Olsen, Gutierrez, and
Dorsch (ref. 22) in figure 2-14 and with those of Lush (ref. 23) in figure 2-15.
(The level of the theoretical curves is adjusted to go through the experimental
data at 90° from the jet axis, where the convection effect is zero.) It is shown
in section 6.7 that this agreement can be considerably improved by accounting
for the effect of the jet velocity field on the convective amplification factor.

The figures show that the measured sound intensity tends to decline at
small angles (<20°) to the jet axis. It was suggested by Powell (ref. 24) that
this drop is caused by refraction. Thus, it is shown in section 1. 3.3 that, in
the geometric acoustics limit, the sound propagating in the flow direction will
be turned by the mean flow into the lower velocity region. Hence, the sound
which is emitted in the downstream direction will be bent out through the sides
of the jet, leaving a reduction in intensity along the axis. The effects of re-
fraction on the sound field are discussed more fully in chapter 6.

2.5.1.5 Spectra. - The sound heard by, an observer at the side of a jet
progressively deepens in pitch as he moves downstream. But since the turbu-
lent eddies are also being convected downstream, the results of section 1.8
indicate that there should be a rise in pitch due to the Doppler shift. It has
been conjectured by Ribner and MacGregor (ref. 25) that there are two effects
which counteract the Doppler shift and produce the observed concentration of
low-frequency sound in the jet axis. The first of these is a consequence of the
self-noise term in equation (2-39) having a higher peak frequency than the
shear noise term. 19 Since the former term is independent of direction while
the shear noise is beamed downstream, this results in a net concentration of
low-frequency sound on the axis. The other effect is a consequence of the
high-frequency sound being more susceptible to refraction by mean flow than
the low-frequency sound.

19

For example, if Ry varied with time as e

-(wen? .
for any integer n, eq.

-2wen)?
(2-37) shows that Ryj11 would vary as e (g7 , indicating that the latter term had

a higher characteristic frequency than the former.
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2.5.2 Supersonic Jets

The arguments used in section 2. 2. 3 to show that the right side of Light-
hill's equation could be treated as a source term do not apply at supersonic
speeds. As a consequence, the acoustic analogy approach may no longer be
valid. Nevertheless, we shall attempt to use it as a guide to obtain a quali-
tative explanation of certain aspects of supersonic jet noise.

2.5.2.1 Emission of Mach waves. - The discussion in section 2.5.1 is
for the most part limited to subsonic flows. Indeed, for supersonic convec-

tion Mach numbers the denominator of equation (2-32) (on which this discus-
sion is based) will go to zero and as a result I'(X,t) will be infinite at ail
points where 1 - Mc cos 8 = 0 (i. e., at points which lie on the Mach cone of
the moving eddies). However, the inequality (2-31), used in the derivation of
equation (2-32) from equation (2-30), no longer holds at these points. But
since any reasonable correlation function must vanish at large times, the
term

co(l - M, cos 8)

in the integrand of equation (2-30) must also vanish at these points. Hence,
the integrand in equation (2-30) can still remain finite.

The factor (1 - M, cos 0)5 in the denominator of equation (2-32) is the
result of source convection effects. As in the case of a point monopole
source, discussed in section 1.8, it causes the sound intensity to increase
whenever the sound sources move toward the observer. However, in the
present case an additional effect resulting from the decrease in the cancella-
tion between the component monopole sources which comprise the quadrupole
causes the exponent of the convection factor to be larger. 20 At zero velocity
this cancellation causes the quadrupole source to be very inefficient. But the
effect decreases as the source acquires a larger component of velocity in the
direction of the observer. In fact, when MC cos 6 = 1, the source is ap-
proaching the observer at precisely the speed of sound. As a result, the

20 i
There are also certain differences between the present case and the point mono-

pole source which result from the source occupying a finite volume of space.
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sound emitted by the elements of the quadrupole further from the observer
cannot overtake the sound from those nearer the observer. At this condition
the cancellation effect is absent and the sound behaves as if it were emitted by
a monopole source. Because of this decreased cancellation, we expect the
sound field to be relatively intense in the direction

g = cos'1

1
M,

Moreover, equation (2-29) shows that in this direction

4
_ o Twpp XXX X "
T (@~ —Q Tk 7, 2% o\ay (2-50)
w 5 6 llkl Ch X

200 X 0

Thus, the wave number of the sound field is the same as that of the turbulence
which produced it, as it is in subsonic flow. But it is now the zero-frequency
(stationary) components of the turbulence which produce the sound. Hence,
the sound is being emitted by an essentially frozen convected pattern of turbu-
lence and the process is therefore analogous to the sound emission by a mov-
ing projectile. 21 For this reason it is called eddy Mach wave radiation.

In order to obtain an expression for the sound field which is finite in the
Mach wave direction, we take the inverse Fourier transform of equation (2-50)
to get

— \4
T(x,7) = Po sz T+ <m c )
167%ch  x Xco X CEy

X Rijkl(y" £, To)ci;‘ dy' dTO

Then separating the vector g‘ into its component En in the Mach wave direc-

tion x/X and its component i;,s perpendicular to this direction s shmwn ia

These ideas are discussed from a different point of view in chapter o.
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fFigure 2-16. - Coordinate system for Mach wave
equation.

fig. 2-16) shows that

- Pn X.X.X 4 -~ — - -
r, ) = 20 357K &Ry G+ B 4F, dF' dr,
1672 xS ot e

And therefore that

- - Py XXXy X, 24 - - = ] - -
I% = (X, 0) = 0 TR —ijkl(y’srﬂhés"O) dES ay’ dTO
1672 8 ae : -0
n

This equation was derived by Ffowcs Williams (ref. 14). We might try, as we
did in the subsonic case, to use experimental flow measurements to estimate
the strength of its source term. However, because of the impossibility of

making hot-wire measurements at supersonic speeds, much iess is known
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about the turbulence. There is hope that, with the recent development of
laser -Doppler techniques, this situation will be remedied. In any event we
can still attempt to determine the dominant characteristics of the sound field
by performing a similarity analysis. Thus the differentiation with respect to
139 ought to scale with the jet diameter D, the integration with respect to
time 74 ought to scale with D/UJ, and Rijkl ought to scale with Uj];.
Then, dimensionally, equation (2-51) becomes
1 ~20 p2y3
X

Notice that in this case the radiated sound depends on the jet velocity to the
third power instead of the eighth, It is now generally accepted that this be-
havior occurs in actual jets at sufficiently high supersonic Mach numbers. A
typical plot of radiated power as a function of jet velocity (taken from ref. 14)
is shown in figure 2-17.

180 — -
///
-
-—
////
//
- 0]

=

2

2 160—

S -

[ //

L P

El -

3 O Rocket

= 7 Turbojet tafterburning:

S 40— A Turbojet (military power:

z' O Exit vefocity W:cg = 0.8

~ —_ U:}

(m
% ! l l | ! | [ B
1000 2000 4000 6000 3000 Y

Jet-exit velonity, J. fisec

Figure 2-17. - Variation of total sound power level with jet velocity for supersonic nozzies. fror ref 14

145



AEROACOUSTICS

19} Ratio of pressure just ahead of exit to atmospheric pressure, p, py, 0.3

Figure 2-18. - Flow from a convergent-divesgent nozzle at different back pressures (from ref. 49).
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2.5.2.2 Fluid mechanics of supersonic jets., - The flow characteristics

of supersonic jets are different depending on whether the pressure at the noz-
zle exit is greater than (underexpanded), less than (overexpanded), or equal to
the ambient pressure surrounding the jet (fully expanded). In the first two
cases, shock bottles will be present. The flow fields for these cases are -
shown in figure 2-18. For certain operating conditions these shock bottles are
sensitive to slight pressure or velocity variations so that only a slight change
in external pressure at the jet exit can cause significant movement of the
shocks. Aside from the presence of shocks the most significant difference
between subsonic and supersonic jets is that for supersonic jets the length of
the potential core increases with Mach number. The general structure of a
fully expanded supersonic jet is illustrated in figure 2-19. Surrcunding the
supersonic potential core is a region in which turbulent mixing occurs at su-
personic velocities. The potential-core length and the supersonic-mixing-
region length were measured by a number of investigators. The data cf
Nagamatsu and Sheer (ref, 26) together with data of other investigators which
they collected are shown in figure 2-20, '
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Figure 2-19. - Parallel-flow superscnic jet expanded to ambient pressure.
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Figure 2-20. - Jet potentiai-core length and sugersanic length as function of jet-exit Mach number. (From ref. 26.)

2.5.2.3 Location of acoustic sources. - One ot the most unportant

acoustic properties of a Jet is the distribution of the sound sources in the ilow.
Three basic methods have been used to measure the location of these sources.
we first consists of operating the iet through a small hole in a larze zound-
absorbing screen (refs. 27 and 28). The second consists of extrapolating
back from the directional maxima in the sound field (refs. 29 and 30). And
the third consists of measuring near-field pressures along the jet boundary
(ref. 31). There are a number of oh}ECTIONS (U USINYE edlid ol ngse et ds
(refs. 14 and 27), and a great deal of cautiun should be chserved ininterpret-
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ing the results. However, the general indication is that the maximum noise-
producing region occurs just downstream of the sonic line. The measurements
of Bishop, Ffowcs Williams, and Smith (ref. 27), which indicate that the prin-
cipal sound sources occur well upstream of this line, are an important excep-
tion.

2.5.2.4 Experimental evidence for existence of Mach waves. - A large
number of optical measurements have been made to investigate the eddy Mach
wave radiation emitted by jets. For example, Lowson and Ollerhead (ref. 32)
and Dosanjh and Yu (ref. 33) have taken shadowgraphs, and Eggers (ref. 34)
and Jones (ref. 35) have taken schlieren photographs. Two distinct types of
waves which show characteristics of Mach waves seem to appear. There is
one group of waves which appear within the first few diameters of the nozzle
exit, and there is another which is not prominent in the shadowgraphs but can
be seen in the schlieren photographs. These latter waves have been observed
to extend further downstream to perhaps 8 to 10 diameters depending on the
Mach number.

Since Mach waves must always originate in the supersonic region and
since there is experimental evidence to indicate that the dominant sound is
generated downstream of this region, the Mach wave radiation may not be an
important source of supersonic jet noise. It is also argued by Tam (ref. 36)
that the frequencies associated with these waves are too high to contribute to
the dominant part of the observed acoustic spectrum.

2.5.2.5 Large-scale structure models of jet noise. - A Mach wave
model has been proposed by Bishop, Ffowcs Williams, and Smith (ref. 27) to
explain certain types of supersonic jet noise. Their experiments indicate that

22

the dominant noise sources are extremely large eddies which are coherent on
a scale much larger than the width of the shear layer and are clustered around
the potential core of the jet. They propose that these eddies have a relatively
ordered structure and arise from an instability of the primary flow. A mech-
anism for calculating the structure of these eddies (analogous to the one used
for laminar instability calculations) is suggested by the authors.

Tam (ref. 36) has also proposed a model (for a nearly fully expanded su-
personic jet) in which the sound generation is related to the larze-scaic [low

9 . . . . T . . .
22an analvsis of Mach wave radiation by Phillins and Pao is discus<scd in
chapter 6.
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structure. In Tam's model, however, it is large-scale spiral-mode instabil-
ities involving the entire jet which are responsible for the noise. These insta-
bilities (if is proposed) arise as a result of a periodic resonant excitation by
the shock waves of disturbances originating in the nozzle. This excitation
causes the disturbances to grow in amplitude.

2.5.2.6 Noise generated by shock waves. - In addition to the noise-
generation mechanisms discussed in the last section, mechanisms involving
shock-turbulence interactions and a feedback mechanism involving the shock

wave structure have been proposed as dominant sources of supersonic noise.
Thus, when turbulence passes through a shock wave, it causes a localized de-
formation of the shock, which results in the emission of sound. This sound,
which is broadband but still strongly peaked is usually called '"shock associ- '
ated noise.'' Analyses of this process have been carried out by Lighthill
(ref. 37), Ribner (ref. 38), and Kerrebrock (ref. 39). This mechanism is
generally regarded as the dominant noise source in supersonic wind tunnels.
The feedback mechanism was proposed by Powell (ref. 40) to explain the
discrete tones observed in the spectrum of choked cold-model jets called "'jet
screech.'' Powell's explanation involves (like Tam's niechanism) an amplifi-
cation by the shock wave structure of disturbances originating in the nozzle.
However, in Powell's model the motion of the shock wave emits a sound wave
which propagates upstream to the nozzle lip. The ensuing change in pressure
which occurs at this point will be just sufficient under certain conditions to
cause a new perturbation of the shock system, resulting ina feedback system.

2.5.3 Low-Velocity Jets: Orderly Structure

At very low Reynolds numbers the flow in a jet is laminar and produces
no sound. However, as the Reynolds number is increased the jet becomes un-
stable to small disturbances and an unsteady periodic flow is set up.

2.5.3.1 Plane jets: edge tones. - First, consider a jet issuing with a

velocity UJ from a long slit of width h into an unbounded quiescent fluid.
When the Reynolds number pOUJh/',u is greater than about 100, the jet be-
comes unstable to disturbances in a certain range of frequencies and begins to
oscillate, taking on a sinuous appearance. This unsteady flow gives rise 0 a
hissing nnise which has a peak frequency near f =0.055 UJ/h.
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Expanding equation (3-B7) for large Z shows that
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AERODYNAMIC SOUND

!
|

© Stit

Figure 2-21. - Experimental arrangement for edge-tone production.
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Figure 2-22. - Vortex structure in edge-tone configuration.

This noise can be converted into a distinct tone of a much greater inten-
sity, called an ""edge tone, '’ by placing an edge some distance downstream
from the slit, as shown in figure 2-21. Because these edge tones are invoived
in the sound production by flutes and organ pipes, they have been thoroughly
investigated both theoretically and experimentally. The experiments indicate
that the jet oscillations are associated with discrete vortex centers shed al-
ternately from the nozzle lip and the edge vortex, as shown in figure 2-22. A
plausible explanation of how this configuration can maintain itself in a stable

fashion was given by Curle (ref. 41), who extended the ideas set forth by
Richardson (ref. 42).

For any given jet velocity there is a minimum distance from wedr= to 5l1it
below which no tone occurs. Beyond this distance the frequency of :he tcne
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increases with increasing velocity and decreases with increasing distance until
a condition is reached where there is a marked irregularity in the vortex pat-
tern. At this point there is a sudden jump in the frequency of the tone. Fur-
ther increases in distance or velocity result in a continuous change in fre-
quency until a second jump occurs and so on. When the process is reversed,
the jumps in frequency will again occur - but at somewhat different values of
the velocity and distance.

" 9.5.3.2 Circular jets: bird tones. - When a round jet issuing from a

round hole of diameter D becoues unstable, the vortex sheath at the edge of
the orifice rolls up into a vortex ring (which is swept downstream), and the
jet resembles the sketch shown in figure 2-23. This behavior occurs for
Reynolds numbers in the range 160 < pOUJD/u < 1200. A more pronounced
periodic behavior can be obtained by allowing the circular orifice to discharge
into a pipe. This periodicity can produce pure tones. However, in order to
produce a sharp tone which is insensitive to small changes in orifice shape, it
is necessary to blow through two (suitably shaped and spaced) orifice plates.
The sound produced by this arrangement is called a ''bird tone.'' It occurs in
some brass instruments and when a human whistles.

The behavior of the [low from a circular nozzle is similar to that from
an orifice with the jet instability evolving from a sinusoid to a helix and
finaily into a train of vortices. When the Reynolds number is increased be-
youd about 1200, the flow in the jet becomes turbulent and the periodic

Fiaure 2-23 - Rotlup of a low-Reynolds -number iet.
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structure gradually disappears. The jet then behaves in the manner de-
scribed in section 2.5. 1. 2. However, there has been some conjecture (refs.
43 and 44) that the low-velocity periodic structure persists {even at these
high Reynolds numbers) in the form of a large-scale orderly structure of the
turbulence and that it may have a direct bearing on the production of noise
from high-speed jets.

2.5.3.3 Sensitive jets. - When a jet is on the verge of becoming turbu-
lent, it is very sensitive to muscial notes. Rayleigh (ref. 8) attributed this
behavior to the fact that, due to the instability of the vortex sheath surrounding
the jet column, the sound waves at the exit plane can easily excite interfacial
waves. The '""sensitive jet'' phenomenon has received a great deal of study
since it was first observed in 1850. In this instance it was in the form of a
gas flame dancing in response to a violoncello.
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APPENDIX - TRANSFORMATION OF SOURCE CORRELATION FUNCTION
In this appendix we shall transform the integrand in equation (2-13) into a

more suitable form. Since we are dealing with a stationary process, this in-

tegrand denotes the time average

T
) o 22T, (3, t)
A= lim 1 — Uy
T—o 2T w2 242

Upon denoting Tij (?’, t') by T{j and using a similar convention for T{j’, it

follows from the second equation (2-14) that

T T
2t 22 2
221! 327 2 27!
A= lim L K s gy L 27 B at
Tewo 2T 52 5r2 T 2T , 2 22
_T T :

Since all stationary functions must remain bounded even at large times, inte-

grating by parts implies that

T T,
2 (3T, ¢T!. oT!

A=lim L 87 [T Ty - S TK
T-= 2T . 2| at at  at

T -
.2 ¢T!. oT!!
= -lim L < S VR VAP
T 2T ,_2 ot Gt
! -T

Then using the second equation (2-14), again, shows that

-
n
4



T 5

A= -lim — % 4 T} dt
T~ 2T . 3 at

Finally, upon integrating by pairts a second time, we find that

oy g4 T
= lim =2 2 T!. T dt
T 2T 5.4 /-T 1} ki

>
)

4 ~
—_— \J t T 1t
2 Ty (7, )Ty (7', )

oT
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CHAPTER 3
Effect of Solid Boundaries

3.1 INTRODUCTION

In chapter 2. Lighthill's equation was used te predict the sound from un-
steady flows in the absence of solid boundaries (or more correctly, from
flows where the effect of such boundaries could be neglected). However, in
many cases of technological interest, solid boundaries appear to play a direct
role in the sound generation process, and their presence often results in a
large increase in the radiated sound. Thus, solid surface interactions are
directly involved in the generation of sound by helicopter rotors, by airplane
propellers, and by aircraft engine fans, compressors, and turbines. They
also have a significant effect on the sound generated by externally blown {lap
STOL aircraft, as well as by high-performance aircraft aboard aircraft car-
riers.

We might anticipate that solid boundaries will affect the sound field in two
ways. First, the sound generated by the volume distribution of quadrupoles in
Lighthill's theory will be reflected and diffracted by the boundaries. And sec-
ond, there may be a resultant distribution of dipole or even monopole sound
sources at the boundaries. Dipoles are particularly likely since, as we have
seen, they correspond to externally applied forces, which occur whenever
surfaces are present in the flow.

In this chapter Lighthill's acoustic analogy is extended to include the ef-
fects of solid boundaries.

PRECEDING PAGE BLAINY NE& piTarn e
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3.2 DERIVATION OF FUNDAMENTAL EQUATION

We shall suppose that the effects of initial transients can be neglected.
Then the integral formula (1-55) can be used to obtain a solution to Lighthill's
equation in any region 1) bounded, wholly or partially, by surface S(7).
But since Lighthill's equation (2-5) has the form of a stationary-medium wave
equation, it is appropriate to put U= 0 and, as a result, to require that the
functions p and G satisfy the stationary-medium wave equations (1-59) and
(1-60), respectively. Indeed, comparing equations (1-59) and (2~5) shows
(upon identifying p' with p) that - '

T L2
1 T g5
p'= _2 G dy dr
dy. ¢V,
c i
0 VorJya) ’
T
~ v \4 '
" G°_+__Eip‘-p' i+—niGdS(§’.)d‘r (3-1)
én CZ aT an c2 T
0 0
-T JS(1)
where

p'=P - Py

denotes the fluctuating density, V_ is (since U = 0) the normal component of

- n
the surface velocity Vs’ and

G =G, 7|X.t) (3-2)

denotes any solution of the inhomogeneous wave equation (1-60) which satisfies
the causality condition (1-52) and vanishes at infinity (if v extends to infinity).
But using the identity

162



EFFECT OF SOLID BOUNDARIES

.2
3 My g 6 o T g &G

dy; 0y, ayj Hay, evyeyy Meyay,

to eliminate T /ay ay and applying the dlvergence theorem (1-47) to
eliminate resultmg volume integrals show (after inserting the definition (1-57)
of V_ and the definition ni(a/ayi) of 3/¢n) that

T 2
= —1- a G _Tl d-y' dT
C2 3y; ayj ]
0 /-1 JuUUT)
Gn, T +c(2)1 +vE R as dr
ay] P aT
S(7)
.1 ; T + c351]p> G | ¢35, Slas dr
cg ol
S(7) _

Then upon changing the names of dummy indices and introducing equations
(2-3) and (2-4), this becomes

|~

e
o
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T 5 T
pr= L oG Ty; &y dr + L a—(-}—fi ds(v)dr
2 ay. 3y, M 2 3y,
c0 1 ] C0 1
-T JUT) . -T o S(7)
T
-1 f f n;h, dS(F)dr (3-3)
cg -T S(1)
where

is essentially the ith component of the force per unit area exerted by the
boundaries on the fluid and

apv. .
hy EG< 1_yS a_p->+pv.v.£+p'V-S§E

T 1o 1 ]ayj ar

We shall consider only the case where the surfaces are impermeable to the
flow1 so that

S -
n;v, niVi for y on S
Then
ov,
_ i G 3G ¢G
nihi =0y Gp - + Py - + pvjv.1 ;- -1,04Y4 ‘_T—

j

and as a result the continuity equation (2-1) implies that

1gince our interest here is in the generation of sound and not its absorption by
acoustically soit surtaces.
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opv.G
i g G
+ V- pij - 0PV — (3-5)

AT 3y, eT

But applying Leibniz's rule (1-48) and the divergence theorem (1-47) to
apviG/ayi shows that

d apviG - azpvi(} - apij
- dy = dy + n vy ds
dr ayi ayi aT ayi

wT) S(7)

v(T)

apviG 2
n, + Y — pv.G|dS
oT ayj ]

1l

S(7)

Hence, after using the argument which follows equation (1-54) to omit the inte-

grated term

7=-T

we find that only the last term

cG

v &£
nor

cG
-n.p s —— = =P
o, 0

in equation (3-5) contributes to the integral in equation (3-3) and hence that
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T T
.2 .
o= L ©G 7 odfdre - G ¢ ds(Pdr
2 ey, 2y, J .2 ey,
€0 J-T Ju(7) ] 0 J-T JS(7)
T
- / poVy S aa@ar  (3-6)

cT

€0 J-T Js(1)

This is the fundamental equation governing the generation of sound in the

presence of solid boundaries. It is. aside from the omission of a possible
initial transient. an exact equation. It applies to any region u(7) which is
bounded by impermeable surfaces S(7) in arbitrary motion provided the
source distributions Tij and fi are localized enough to ensure convergence
of the integrals (see footnote 9 of section 2. 3).

In the acoustic analogy approach we assume that the stress tensor Tij
and the surface force fi can either be modeled mathematically or determined
experimentally. Then the right side of the equation is known, and the density
fluctuations in the sound field can be calculated. The first term represents
the generation of sound by volume sources. The second term represents the
‘sound generated by unsteady forces exerted on the fluid by the solid boundar-
ies. The last term represents the sound generated as a result of the volume
displacement (thickness) effects of the surface.

In any given problem there will usually be many possible choices for the
fundamental solution G in this formula. But it should be chosen to obtain an
optimum approximation to the sound field irom the available information about
the sources fi and T,.. Since this involves a certain amount of intuition, it
is important to study some of the specific applications of this equation. The
remainder of the chapter is devoted to this tusk.

3.3 FFOWCS WILLIAMS - HAWKINGS EQUATION

When the region v is all of space, the surface integrals in equation (2-6)
will not be present, and the only possible choice of G will be the free-smace
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0 given by equation (1-38). In this case, equation (2-11)

Green's function G
(which was the starting point for the jet noise analysis in chapter 2) is re-
covered. Now even when solid boundaries are present, there is no reason
why G cannot still be taken as the free-space Green's function, In this sec-

tion, we investigate the consequences of such a choice.

3.3.1 Derivation of Equation

0

Since equation (1-38) shows that G dependson y and X only through

r=|X -y, it follows that

0 .0
8G~ _ oG (3-7)

83/i axi

Hence, inserting equation (1-38) into equation (3-6) shows that

T
ot @ A sft-7-L% T, dy dr
C2 in X, 47r oy ]
0 J -T )
T
L L osft-r-E) 5 dsar
2 Exi 47r oy 1
€ - -T S(1)

T
PAV 4
s 1 0 n 2 5t .7 - )dsHdr (3-8)
(\2 47r 2T Cq
0 T JS(7) '
In order to carry out the integrations over r. it is convenient to introduce

a Lagrangian coordinate svstém, say ¢(y.t). in which the surface S(7) re-
mains fixed. Then the velocity V and the acceleration a of any poiat ¢ of

this coordinate system are given by
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- A
v = (& 1)
cT -
¢=Constant
(3-9)
3= av(g, 1)
s -
¢=Constant
J
And since each point on the surface $S(7) is fixed in this system
vS=V (3-10)

for all points on S(7).

Let us now suppose that the region u(7) occupies the exterior of the im-
permeable surface S(7), as shown schematically in figure 3-1. The last term
in equation (3-8) appears to represent a monopole source. And if the surface
S(7) were expanding and contracting in such a way as to cause its enclosed
volume to change with time, we would certainly expect this term, which repre-
sents the sound generated by volume displacement effect, to be a monopole.
However, if the surface moves in such a way that the volume of the interior
region uc(r) does not change with time, we might expect this source to de-
generate into higher order sources. Thus, it is shown in books on elementary
fluid mechanics (ref. 1) that the time rate of change of an element of volume
in the Lagrangian coordinate system is proportional to the divergence of the
velocity V of a fixed point in this system. Then if the volume of u\_(r} is to

vit